Fire responses of bushland plants after the January 1994 wildfires in northern Sydney

P.J.Kubiak

P.O. Box 439, Ryde, NSW 1680 AUSTRALIA

Abstract: In early January 1994 wildfires burned areas of bushland in northern Sydney (lat $33^{\circ} 45^{\circ}$ S, long $151^{\circ} 05^{\circ}$ E) in coastal south-eastern Australia. This paper reports observations of the fire responses for 828 species of bushland plants – 576 native species and 252 exotic species in the Lane Cove River and Narrabeen Lagoon catchment areas. Information recorded includes whether a species was killed by fire or resprouted post-fire, when seedlings were first observed following fire, and the times of first flowering and first fruiting (or spore production) after the fires. The estimated peaks of post-fire flowering or fruiting for a few species are given. It was not practicable to record data in all categories for all of the 828 species due to the logistical challenges involved in recording data across a large area of bushland, over a number of years.

The data presented add to the growing body of knowledge on plant fire responses and will assist the management and conservation of bushland in the study areas, as well as the broader Sydney region.

Cunninghamia (2009) 11(1): 131-165

Introduction

Fire plays an important role in the shaping of Australia's terrestrial ecosystems and the work of many researchers has created a rich literature about fire ecology in Australia (e.g. see Gill 1975, Gill *et al.* 1981, Gill *et al.* 1991, Gill *et al.* 1994, Williams & Gill 1995, Brown & Tohver 1995, DEST 1996, Gill *et al.* 1999, Bradstock *et al.* 2002).

When considering the responses of plant species to fire, a basic distinction is often made between species that are killed by fire and those that resprout after being burnt (Gill 1981, Gill & Bradstock 1992, Keith 1992, Benson & McDougall 1993). The former group have been called 'obligate seeders' (or 'non-sprouters') and the latter 'resprouters' (or 'sprouters') (Whelan 1995). Responses to fire may vary between different populations of a plant species (Gill 1981, Williams & Gill 1995, Bond & van Wilgen 1996, Keith 1996, Auld 1996, Auld 2001). Within a given population of a plant species, the response to fire may be somewhat variable. Such variability may be due to the size/stage of development of individual plants, the intensity of any given fire, the season in which a particular fire occurs, the length of time between successive fires and/or genetic variability between and (possibly) within populations of plants (Gill 1981, Whelan 1995, Morrison 1995, Auld 1996, Bond & van Wilgen 1996, Morrison & Renwick 2000, Myerscough et al. 2000, Auld 2001, Whelan et al. 2002).

Following a fire, the time taken by plants to flower after germination from seed, is known as the 'primary juvenile period'. The time required for resprouting plants to flower following a fire is called the 'secondary juvenile period' (Gill 1975). Benson (1985) and Benson & McDougall (1993, 2005) indicated that the time taken by plants following a fire to produce mature fruits is more important to the survival of a plant species, than is the time taken to first flowering. However, the first substantial post-fire flowering may be ecologically important for animals dependent on those flowers for food, e.g. nectar and pollen-feeding insects, birds and mammals. Benson (1985) observed that the initial onset of post-fire flowering often involves only a few advanced individuals. Keith et al. (2002a) suggested that the initial post-fire flowering season of most obligate seeder plant species is unlikely to result in the production of many seeds. A further delaying factor, for some species, is that they produce fruits that take a relatively long time to mature (Benson 1985). The long-term survival of a plant species can often depend on the formation of a viable seedbank (either in the soil or on the plants), which may take a number of years to accumulate following the initial onset of post-fire fruiting (Benson 1985, Auld 1996, Keith 1996, Benson & McDougall 1998, Auld et al. 2000, Myerscough et al. 2000, Keith et al. 2002a, Keith et al. 2002b).

The durations of primary and secondary juvenile periods may vary between populations of a given plant species, due to factors such as differences in the amount of postfire rainfall, length of growing season and variations in nutrient availability and soil depth between different habitats (Bradstock & O'Connell 1988, Keith 1996, Benson & McDougall 1998, Keith *et al.* 2002a, Knox & Clarke 2004). Generally, the durations of primary juvenile periods for woody plant species are longer than those for herbaceous species (Keith 1996). Also, woody resprouters tend to have longer primary juvenile periods than woody obligate seeders (Keith 1996). Benson & McDougall (2005) indicated that the primary juvenile periods for many plant species in the bushland of the Sydney region are yet to be recorded.

The responses of flora to fire in south-eastern Australia have been studied by many researchers (see Table 1) while aspects of the fire ecology of individual Sydney plant species have also been studied (Table 2) There are a number of reviews covering fire ecology of major families in the Sydney context; Fabaceae (Auld 1996), Myrtaceae (Myerscough 1998), Proteaceae (Myerscough *et al.* 2000), Rutaceae (Auld 2001) and Orchidaceae (Weston *et al.* 2005). Benson & McDougall (1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005) gathered together diverse ecological information, including fire response data, for bushland plants in the Sydney region. Their work drew on both published and unpublished sources.

Between late December 1993 and mid-January 1994 wildfires occurred in many parts of eastern NSW. Major fires occurred in a number of national parks around and within Sydney (Costello 1994, Gill & Moore 1996, 1998) including the burning of sizable tracts of bushland in the Lane Cove River and Narrabeen Lagoon catchment areas of northern Sydney (NSW State Coroner 1995). These fires provided the opportunity to record some of the post-fire responses of bushland plants in the Lane Cove River and Narrabeen Lagoon catchment areas, a study that continued over nearly 6 years following the 1994 fires.

Table 1 A selection of studies on fire responses of plant species in south-eastern Australia and the Sydney area

Researcher	Location	Type of observation
Purdie & Slatyer (1976) Purdie (1977)	Canberra	regeneration of plant species following fires in bushland
Wark <i>et al.</i> (1987) Wark (1996, 1997, 1999, 2000)	southern coastal Victoria	responses of plants, after a high intensity wildfire
Fox & Fox (1986) Fox (1988)	Myall Lakes	categorized the modes of post-fire regeneration for plant species in woodland and forest
Myerscough <i>et al.</i> (1995) Myerscough & Clarke (2007)	Myall Lakes	fire responses of plants in coastal heaths
Benwell (1998)	north-eastern NSW	modes of post-fire regeneration of coastal heathland plant species
Clarke & Knox (2002) Knox & Clarke (2004) Clarke <i>et al.</i> (2005)	New England Tablelands	responses of woody plants following fires
Walsh & McDougall (2004)	Kosciuszko National Park Sydney area studies	recovery of plants in treeless subalpine vegetation after a major wildfire
Siddiqi et al. (1976)	Bouddi NP	effects of fire on coastal heathland vegetation
Benson (1981)	Agnes Banks	modes of regeneration after fire for plant species on a sand deposit
Benson (1985)	Brisbane Water NP Glenorie	maturation periods for some shrub species after fires
Nieuwenhuis (1987)	Ku-ring-gai Chase NP	effects of fire frequency on bushland
Bradstock <i>et al.</i> (1997) Auld <i>et al.</i> (2000)	Brisbane Water NP Sydney area	effects of high frequency fire in a coastal heathland soil seedbank longevity of plant species

Table 2 Individual plant species whose fire ecology has been studied in the Sydney area

Species (family)

Researcher

Acacia suaveolens (Fabaceae)	Auld 1986, Auld & Myerscough 1986, Warton & Wardle 2003
Angophora hispida (Myrtaceae)	Auld 1987
Banksia ericifolia (Proteaceae)	Bradstock & Myerscough 1981, Morris & Myerscough 1988
Banksia oblongifolia (Proteaceae)	Zammit 1988
Blandfordia nobilis (Blandfordiaceae)	Johnson et al. 1994
Eucalyptus luehmanniana (Myrtaceae)	Davies & Myerscough 1991
Persoonia lanceolata (Proteaceae)	Auld et al. 2007
Telopea speciosissima (Proteaceae)	Bradstock 1995

Various facets of fire ecology for groupings of plant species in the Sydney region have been studied, e.g. Auld & Denham (2006), Auld & O'Connell (1991), Auld & Tozer (1995), Bradstock (1990), Bradstock (1991), Bradstock *et al.* (1994), Bradstock & Myerscough (1988), Bradstock & O'Connell (1988), Cary & Morrison (1995), Clark (1988), Denham & Auld (2002), Keith & Bradstock (1994), Kenny (2000), Morrison (1995), Morrison *et al.* (1996), Morrison & Renwick (2000), Ooi *et al.* (2006, 2007), Pannell & Myerscough (1993), Pyke (1983), Thomas *et al.* (2007), Whelan & York (1998) and Zammit & Westoby (1987).

The conservation of biodiversity is an important objective in the management of Lane Cove and Garigal National Parks, the two major reserves in the study area (e.g. see NSW NPWS 1998a, 1998b), while, in recent years, local councils, supported by the community, have also placed increasing emphasis on the conservation of the flora and fauna of many smaller bushland reserves. The increased knowledge of plant responses to fire in this present study will assist in the management, for conservation purposes, of bushland in the Narrabeen Lagoon and Lane Cove River areas. Such information may also have broader application in the management of bushland in the Sydney region, particularly when used in conjunction with the findings of other researchers.

Methods

Study areas

The Lane Cove River valley is situated in the northern Sydney metropolitan area (lat 33° 45' S, long 151° 05' E), in the Central Coast botanical subdivision of NSW. In the course of European settlement during the last two centuries much of the catchment area has been cleared, for agriculture at first, and subsequently for urban development. Large areas of native vegetation have however survived along the Lane Cove River, and much of this bushland has been protected within Lane Cove National Park (see NSW NPWS 1998a for this Park's plan of management), with smaller portions included in reserves managed by local councils.

The environmental history of the Lane Cove River valley is documented by McLoughlin (1985) and McLoughlin & Wyatt (1993) and the general vegetation by Benson & Howell (1990, 1994). Clarke & Benson (1987) mapped and described 15 vegetation types, including mangrove forest, saltmarsh, tall forest, open-forest, woodland, shrubland and riparian shrubland for Lane Cove National Park (then known as Lane Cove River State Recreation Area). Most of the surviving bushland in the Lane Cove River area is sclerophyllous and occurs on sandstone geology, described in broad terms by Keith (2004) as the Sydney Coastal Dry Sclerophyll Forests. In the Lane Cove River area, these forests are dominated by a few species of eucalypt, most commonly *Angophora costata*, *Eucalyptus piperita* and *Corymbia gummifera*. The floristic diversity of the area is high.

Plant species lists compiled for bushland in the Lane Cove River area, include Coveny (1965–78), Beecroft Cheltenham Civic Trust (1976), Lane Cove River SRA Trust (1983), STEP Inc. (1985), Kubiak (1986–89, 1996), Clarke & Benson (1987), Smith & Smith (1993) and Martyn (1994). In the Lane Cove River area, watercourses and disturbed places, such as the edges of bushland, are frequently dominated by exotic plant species.

The Narrabeen Lagoon catchment area is about 15 km northeast of the Lane Cove River catchment area and is about 8 km closer to the coast. Benson & Howell (1990, 1994) provide general descriptions of vegetation in the Narrabeen Lagoon catchment. The floristic diversity of the Narrabeen Lagoon catchment area is comparable to that of the Lane Cove River area. Sheringham & Sanders (1993) mapped and described 21 vegetation types in the eastern section of Garigal National Park (centred on Deep Creek) including areas of openforest, woodland, heathland, wetland, swamp and closedforest. Heathland is much more common at the Narrabeen Lagoon area than at Lane Cove River (see Benson & Howell 1990, 1994). Plant species lists for the Narrabeen Lagoon area include Coveny (1965-75), National Trust of Australia (NSW) (1980), Kubiak (1992) and Sheringham & Sanders (1993). A plan of management has been prepared for Garigal National Park (NSW NPWS 1998b). Weed infestation in the Narrabeen Lagoon catchment area tends to be confined to some sections of major watercourses and to disturbed areas, such as the margins of bushland and along service tracks.

The management of fire for conservation purposes in the Lane Cove River and Narrabeen Lagoon catchment areas is complicated by the fragmentation of the bushland and by the pressures arising from surrounding suburban development. Clark & McLoughlin (1988) inferred what the frequency of fires may have been in the Lane Cove River area before the arrival of Europeans. Arson and the lighting of fires for management purposes are probably now the main factors influencing fire frequency. Generally, the study areas have experienced bushfires quite frequently in the recent past. However, there may be some patches of bushland within these catchments that escape being burnt for fairly long periods of time.

The 1994 fires

The Lane Cove River fire began on 6 January 1994 in the Browns Waterhole area and was probably deliberately lit (NSW State Coroner 1995). During that day bushland was burnt at North Epping, South Turramurra, Marsfield and West Pymble. Strong winds on 6 January and the following day rapidly forced fire downriver, with the spread accelerated by spotting. On 7 January, fire burnt bushland along Terrys Creek, Marsfield and downriver to Blue Gum Creek. Fire fighters backburned overnight on 7 January, along Delhi Rd. from Fullers Bridge to Plassey Rd. at North Ryde, in an attempt to contain the wildfire. However, strong winds on 8 January forced fire across Delhi Rd. into the Fairyland area and across the river into Mowbray Park and the Stringybark Creek area at Lane Cove West (NSW State Coroner 1995). The area of bushland burnt in the Lane Cove River catchment was variously estimated to be c. 383 ha (NSW NPWS 2002, DEC NSW 2005a, 2006a) or c. 580 hectares (NSW State Coroner 1995, Gill & Moore 1998). The former estimate may possibly have been limited to bushland burnt in Lane Cove National Park, whilst the latter was for all bushland 'affected' in the Lane Cove River area. The fires were generally described as being of a very high intensity (NSW State Coroner 1995).

The fire in the Narrabeen Lagoon catchment area began on 8 January 1994, having originated at Cottage Point on 7 January, and spread rapidly through the adjoining Ku-ringgai Chase National Park (NSW State Coroner 1995). On 8 January, and over the next few days, wildfire burnt through bushland in the Deep Creek, Mullet Creek, Middle Creek, Jamieson Park and Wheeler Creek areas. This fire event was estimated to have burnt c. 1000 ha in the eastern section (centred on Deep Creek) of Garigal National Park (DEC NSW 2005b, 2006b). Additional bushland in the Narrabeen Lagoon catchment area, outside of Garigal National Park, was also burnt.

Field observations

Field observations of fire responses of bushland plants were made in Lane Cove River catchment area between January 1994 and October 1999 (a period of almost 6 years), with a few occasional observations in following years (Table 3). Field observations in the Narrabeen Lagoon catchment area, including any flowering or fruiting of plants, were made between March 1994 and late October 1994 (over approximately 8 months). The longer period of study in the Lane Cove River area meant that more observations of postfire flowering and fruiting were made for plant species in that area, than in the Narrabeen Lagoon catchment.

Observations were recorded while walking through burnt bushland after the fires. No fixed transects or quadrats were used. Observations were made along tracks, roads and walking trails throughout the study areas (Table 3). As wide a variety of habitats as possible were looked at, including bushland away from tracks and known to contain species or vegetation types that did not occur along the tracks. Most of the main tracks, and many of the minor ones, were walked at least once, and some, many times .. The total distance walked, while making observations, during the course of this study was probably in the order of several hundred kilometres. The routes walked were often the same, particularly in the more intensively studied areas. Attention was given to repeatedly observing particular species at certain locations, so that parameters such as the time of first flowering and first fruiting could be recorded for some of the rarer or more localized plant species, as well as the more common species. The author's field experience in the study areas prior to the fires was drawn upon to help locate particular species that might otherwise have been overlooked. (Some new 'discoveries' of species, previously unrecorded by the author, were made following the fires). The main references used for plant identification were Harden (1990-1993, 2002), Harden & Murray (2000), Carolin & Tindale (1994), Fairley & Moore (1989) and Robinson (1991).

In the first few months following the fires, the main focus was on whether plant species in the study areas were killed by fire or had resprouted after being burnt. Sometimes the 'skeletons' of burnt plants could be found and, if these showed no sign of resprouting for some months after the fires, then this suggested that the plants were probably killed by fire. Such skeletons occasionally retained a few scorched leaves or fruits, which helped with the identification of the species killed by the fires. Areas that had evidently experienced the highest intensity fires tended to contain far fewer identifiable plant skeletons. In these situations, the presence of woody fruits, or cones, on fatally scorched plants helped with the identification of some species. In addition, it was often possible to recall that a species had occurred at a particular site prior to that location being burnt. If such a species appeared to be absent from that same site months after the fire, or was only present in the form of post-fire seedlings, then this also helped to decide whether that species was killed in the fires. Terrestrial orchids were amongst the most difficult plants to determine, as most of them were probably seasonally dormant at the time of the fires. Presumably, the terrestrial orchids mostly sprouted from dormant subterranean tubers after the fires (as discussed by Weston et al. 2005).

Other data recorded, in the first few months after the fires, included the first appearance of some seedlings and the early post-fire flowering and fruiting of some plant species. As the months and years went by, the time to first flowering and fruiting was recorded for more species. The likely peaks of post-fire flowering or fruiting were also subjectively estimated for a few species. Such 'peaks' of post-fire flowering and fruiting may plateau over a number of years. These estimates are probably best regarded as broadly indicative as their estimation may have been affected by the subjective nature of the observations and by variability between and within populations. The rate of maturation tends to vary between individual plants, within any population of a given species (e.g. see Benson 1985).

Fire patchiness and intensity

Benson (1985) suggested that varying fire intensities within single fire events are a common feature of fires affecting Hawkesbury sandstone vegetation in the Sydney region, and indicated that such variability may be, at least in part, due to landscape or habitat variation. Keith et al. (2002a) noted that topographically varied areas, such as the sandstone plateaus of the Sydney region, are likely to exhibit greater fire patchiness than areas of heathland burnt on extensive plains. Walsh & McDougall (2004) also reported variability in the wildfire intensity in the treeless subalpine vegetation of Kosciuszko National Park in southern NSW. Patches of vegetation that have not been burnt by a particular fire can act as fire 'refuges'. Such fire refuges can protect fire sensitive species and also provide sources of seed for dispersal to burnt areas after fires (Benson 1985, Williams et al. 1994, Gill & Bradstock 1995, Bradstock et al. 1997, Whelan et al. 2002). Morrison (2002) studied the effects of fire intensity on the plant species composition of bushland in Ku-ring-gai Chase National Park, following a wildfire of early January 1994.

The January 1994 fires in the Lane Cove River and Narrabeen Lagoon areas were generally of an apparently high intensity

Table 3. Dates of observations of fire responses for localities in the Lane Cove River and Narrabeen Lagoon catchment areas, following the January 1994 fires.

Localities	Dates of observations
Lane Cove River catchment	
Upper Stringybark Creek, Lane Cove West	1994 Apr.
Mowbray Park, Lane Cove West	1994 Feb, Apr, Jul, Oct, Dec.
	1996 Jul, Sep, Oct.
	1997 Mar.
	1998 Sep, Oct.
Fairyland, North Ryde (south of Delhi Rd., west of Quebec	1994 Jan.(2), Mar, Aug.(2), Sep, Oct, Nov, Dec.(2)
Road, north-east of Epping Road & north of the river)	1995 Jan, Mar, Apr, May (2), Jun, Aug, Sep, Oct, Dec.
	1996 Apr, Aug, Oct, Dec.
	1997 Jan, Apr, Sep(2), Nov.
	1998 Mar, Jun, Sep, Oci.
	2002 Oct.
	2007 Oct.
Blue Gum Creek Lindfield	1994 Feb May Jul Oct Nov
Blue Cum Creek, Emaneira	1995 Sep, Dec.
	1996 May, Dec.
	1999 Oct.
Sir Phillip Game Reserve, Lindfield	1994 Jul.
Fullers Bridge to De Burghs Bridge, along the south (or west)	1994 Feb, Mar.(2), Apr, May, Jun.(2), Jul, Aug.(2), Sep(2), Oct.(2), Nov, Dec.
bank of the river, North Ryde (variously including Plassey	1995 Jan, Mar, Jun, Aug, Sep.(2), Oct.(2), Nov, Dec(2)
Road, Banksia Hill, Carter Creek, Tunks Hill, Riverside Drive,	1996 Jan.(2), Mar, Apr, May, Jun.(2), Jul, Aug.(2), Sep(2), Oct, Nov.(2) Dec.
Riverside walking frack & just north of Kobada Park)	1997 Jan, Feb, Mai, May, Jun, Jun, Aug, Sep, Oct. (2) , Nov.
	1999 Jan Mar Sen (2) Oct
	2000 May
	2002 Oct.
Fullers Bridge to De Burghs Bridge, north (or east) bank of the	1994 Feb, Mar, Jun, Jul, Aug, Sep, Oct, Dec.
river (mostly Great North Walk)	1995 Mar, Jun, Sep, Oct.
	1996 May, Aug, Sep, Oct, Nov.
	1997 Feb, Aug, Nov.
De Burghs Bridge to Browns Waterhole, south bank of the river	1994 Mar (2) May Jun Jul
be buights bridge to browns waterhole, south bank of the river	1995 Sep.
	1996 May
De Burghs Bridge to Browns Waterhole, north bank of the river	1994 Mar.(2), Jul.(2), Aug, Sep, Oct, Dec.
	1995 Sep.
	1996 May, Jul, Sep.
	1997 Jul, Oct,
	1998 Aug. (2) , Ocl.
	2000 May
	2007 Aug.
Terrys Creek (from Somerset Park /Lucknow Park to Browns	1994 Mar.(2), May, Jul, Sep, Oct, Dec.
Waterhole)	1995 Sep.
	1996 May, Sep.
	1997 Jul.
Unriver of Browns Waterhole, north bank of the river	1998 Aug. 1994 Mar Sep
opriver of browns waterhole, north bank of the river	1995 Mar.
Upriver of Browns Waterhole, south bank of the river	1994 Mar, Jul.
-	1996 May, Aug.
Narrabeen Lagoon catchment	
Mullet Creek area	1994 Apr, Sep.
Deep Creek area	1994 Mar, May (2), Jun, Aug, Sep.(2), Oct.
Middle Creek area	1994 Mar, Aug.
Jamieson Park	1994 Apr.
Oxford Creek area	1994 Mar, Oct.
Wheeler Creek area	1994 May, Aug.

- I noted a large proportion of the bushland burnt in both of the study areas experienced 100% tree and/or large shrub canopy scorch. However there was some patchiness- some patches were evidently burnt at low or moderate intensities, other patches of vegetation remained unburnt. During the earliest period of observations, the locations of unburnt patches were noted and plant responses in patches that were apparently burnt at lower intensities were recorded (e.g. Muellerina eucalyptoides (Loranthaceae) resprouted after an evidently low to moderate intensity fire). Observations of plant responses in apparently lower fire intensities were used to help understand the responses of the same species in the more severely scorched areas. For example, if a species was observed as being killed (as evidenced by the presence of scorched, dead plant skeletons) in the lower intensity areas (e.g. some of the edges of burnt areas), then this information complemented any observations that no plants of the same species could be found resprouting in the immediately adjoining areas that were evidently burnt at a higher intensity.

Results and discussion

Fire responses for 828 vascular plant species (576 native and 252 exotic species) were recorded in bushland of the Lane Cove River and Narrabeen Lagoon catchments, following the wildfires of January 1994 (Appendix 1). In many cases it was possible to determine whether a species resprouted or was killed by the fires, and generally, the more widespread and common a species, the greater was the opportunity to reliably determine the mode of regeneration. All fire responses reported here are for individual plants whose above-ground parts were 100% scorched. The responses of individual plants that were only partly burnt are not included.

It was not practicable to record data in all of the categories for all of the 828 species of plants because of the logistical challenges for one observer recording information across large areas of bushland, over a number of years. The first post-fire flowering, or fruiting, of some of the locally rarer species may have been missed. For example, the orchid *Orthoceras strictum* is rare in the bushland of the Lane Cove River area and one plant was seen with green fruits in January 1996, but it is possible that this species may have flowered a year earlier and simply been overlooked, due to its local rarity and inconspicuous colouration.

Fire responses of ferns and fern allies

The ferns and fern allies (pteridophytes) mostly resprouted after the January 1994 wildfires. The exceptions were mostly epiphytic or lithophytic species, such as *Hymenophyllum cupressiforme* (Hymenophyllaceae) and *Pyrrosia rupestris* (Polypodiaceae), which were killed when severely scorched. Most of the resprouting pteridophytes regenerated from below the ground, presumably from buried rhizomes. The treefern *Cyathea australis* (Cyatheaceae) resprouted from the apex of the trunk after the fires. Benson & McDougall (1993) noted that old plants may survive many bushfires. *Calochlaena dubia* (Dicksoniaceae) and *Pteridium esculentum* (Dennstaedtiaceae) resprouted very vigorously but a few *Calochlaena dubia* rhizomes were apparently killed by fire, probably because they were growing in shallow soil on top of a boulder. Benson & McDougall (1993) stated that *Calochlaena dubia* is a vigorous resprouter following fire and may produce shoots within a month of burning, even in the absence of rain.

The majority of the resprouting ferns produced spores within the first year after the fires. Amongst the earliest resprouting ferns to produce spores were *Blechnum cartilagineum* (Blechnaceae), *Pteridium esculentum* (Dennstaedtiaceae) and *Todea barbara* (Osmundaceae). These species had some fronds with mature sporangia by 10 weeks (March 1994) after the fires. L. McDougall observed that vigorous regrowth of *Blechnum cartilagineum* produced fertile fronds in less than 20 weeks after a high intensity fire at Killarney Heights, in northern Sydney (Benson & McDougall 1993).

Fire responses of conifers

Bond & van Wilgen (1996) stated that resprouting after fire is much rarer in conifers than in woody angiosperms. Of the few species of conifer in the study area *Callitris muelleri* (Cupressaceae) was killed by fire in the Narrabeen Lagoon area. At one site, seedlings (2 - 6 cm tall) were observed growing in the vicinity of fatally scorched adult plants, within 32 weeks of burning, and evidently grew from seed that was shed from cones, which opened after the fire, on the standing plants. Benson & McDougall (1993) recorded that this species is killed by fire and that seedling recruitment occurs mainly after fire.

Benson & McDougall (1993) documented that the low-growing coniferous shrub Podocarpus spinulosus (Podocarpaceae) resprouts at ground level or below, after being burnt and noted that this species probably has no soilstored seedbank and that its seed is probably dispersed by birds. Podocarpus spinulosus resprouted vigorously after the 1994 fires in the Lane Cove River and Narrabeen Lagoon areas - no seedlings were observed in the burnt bushland of the Lane Cove River area in the first few years after the January 1994 fires. The resprouted male and female plants in the Lane Cove River area first started flowering in October 1995 and some mature fruit were produced by early December 1995 (c. 100 weeks after the fires). Stems of male plants occurred in groups separate from the grouped stems of female plants probably indicating spread by vegetative means.

Fire responses of monocotyledons

The great majority of monocotyledons resprouted following the 1994 fires, but a few species were killed e.g. *Caustis flexuosa* and *Caustis pentandra* (Cyperaceae). D. Benson observed *Caustis flexuosa* and *Caustis pentandra* were killed by fire at Leura swamp, in the Blue Mountains, west of Sydney (Benson & McDougall 2002). However, Williams & Clarke (2006) reported that *Caustis flexuosa* resprouted after fire, at Gibraltar Range National Park, in northern NSW.

Adams & Lawson (1984) studying the regeneration of epiphytic and lithophytic orchids (Orchidaceae) in East Gippsland, Victoria, following high intensity fires in March 1983, found that scorched individuals of *Dockrillia striolata* (*Dendrobium striolatum*) and *Thelychiton speciosus* (*Dendrobium speciosum*) showed some capacity to resprout from basal shoots. Weston *et al.* (2005) suggested that epiphytic and lithophytic orchids tend to grow in microhabitats that are less fire-prone and that *Cestichis reflexa* (*Liparis reflexa*) and *Thelychiton speciosus* are capable of resprouting after low intensity fires. In the study areas in northern Sydney the lithophytic orchids *Cestichis reflexa* and *Dockrillia linguiformis* were killed when severely scorched by the 1994 fires.

Post-fire flowering and fruiting of monocotyledons

Most of the monocotyledons flowered in the first year after the 1994 fires. *Imperata cylindrica* var. *major* (Poaceae) was one of the first plants to flower and fruit and vigorously resprouted, with new shoots visible within one week after the fires, flowered within 6 weeks (February 1994) and fruited within 11 weeks (March 1994). L. McDougall also observed that *Imperata* flowered prolifically within several weeks of the January 1994 high intensity fire at Narrabeen (Benson & McDougall 2005).

The four species of *Gahnia* (Cyperaceae) were amongst the slowest of the monocotyledons to flower and fruit after the fires in the Lane Cove River area (even though these *Gahnia* species resprouted vigorously). For example, the resprouting large sedge, *Gahnia clarkei*, took approximately 3 years (January 1997) following the fires, to produce fruits.

Xanthorrhoea arborea (Xanthorrhoeaceae) exhibited a marked delay between the post-fire development of its fruit at 63 weeks (March 1995) and the release of its seeds at c. 100 weeks (December 1995) after the study fires, in the Lane Cove River area. The related *Xanthorrhoea media* had developed its fruits at c. 49 weeks (December 1994) and was shedding its seeds at 56–63 weeks (January to March 1995), after the fires in the Lane Cove River area. Flowering of these two species occurred earlier in the Narrabeen Lagoon area (*Xanthorrhoea media:* 17–21 weeks, *Xanthorrhoea arborea:* 35–38 weeks after the fires) than in the Lane Cove River area (*Xanthorrhoea media:* 39–43 weeks, *Xanthorrhoea arborea:* flowered 51–56 weeks after the fires).

Keith (1996) recorded that in the Sydney region *Prasophyllum elatum* (Orchidaceae) flowers abundantly only after fire. In the Lane Cove River and Narrabeen Lagoon areas flowering seemed to be stimulated by the January 1994 fires and at several sites there were many more flowering stems of

Prasophyllum elatum present in the first flowering season (September 1994) after the fires, than had been evident before the fires. At one previously long-unburnt site in the Lane Cove River area, *Diuris maculata* flowered much more in the first post-fire flowering season (August 1994), than it had prior to being burnt.

Jones (1988, 2006) noted that a number of Australian terrestrial orchids, including *Prasophyllum elatum*, flower much more profusely in the season following a hot summer fire, and indicated that high intensity fires (such as the Ash Wednesday bushfires of February 1983) can result in spectacular flowering displays of terrestrial orchids. Beardsell *et al.* (1986) noted a dramatic increase in flowering of *Diuris maculata* following hot summer bushfires. Weston *et al.* (2005) indicated that the long-term consequences of frequent fires on populations of terrestrial orchids are poorly understood. They suggested that a regime of high frequency fire could possibly deplete populations of some terrestrial orchid species, even though their flowering might appear (initially) to be stimulated by fire.

Bond & van Wilgen (1996) stated that fire-stimulated flowering is very common in monocotyledons and Keith (1996) listed Sydney region monocotyledons that flower abundantly only after fire, including Blandfordia nobilis (Blandfordiaceae), Cyathochaeta diandra (Cyperaceae), corymbosum Haemodorum (Haemodoraceae) and Xanthorrhoea media (Xanthorrhoeaceae). The January 1994 wildfires in the Narrabeen Lagoon and Lane Cove River areas were probably an important opportunity for such species to flower, set fruit and to consequently recruit seedlings into their populations. If fires occur too infrequently, then such species can decline (Keith 1996). A few species of woody dicotyledons may also be adversely affected by a regime of infrequent fires, due to their reliance on fire-stimulated flowering, e.g. Angophora hispida (Myrtaceae) and Telopea speciosissima (Proteaceae) (Keith 1996, Keith et al. 2002a). However, species such as Angophora hispida and Telopea speciosissima may also be adversely affected by too high a fire frequency (Auld 1987, Bradstock 1995).

Fire responses and post-fire flowering/fruiting of dicotyledons

A few species of dicotyledons showed variable responses to the January 1994 fires. The shrub *Gompholobium latifolium* (Fabaceae) was killed in the Lane Cove River area, but scattered plants of this species resprouted in the Narrabeen Lagoon area. Auld (1996) recorded that variation in fire response occurs within individual species of the genus *Gompholobium* and suggested that such variability can result from a number of causes, including genetic variation within a species. *Acacia oxycedrus* (Fabaceae) was killed by fire in the Lane Cove River area, but mostly resprouted after the January 1994 fires in the Narrabeen Lagoon area. Auld (1996) noted that *Acacia oxycedrus* is one of a number of *Acacia* species in the Sydney region that exhibit a variable fire response. The small shrub *Xanthosia pilosa* (Apiaceae) was mostly killed by the January 1994 fires in the Lane Cove River catchment area, but some plants there did resprout. L. McDougall found that *Xanthosia pilosa* displayed a variable fire response in Garigal National Park, northern Sydney (Benson & McDougall 1993). The shrub *Astrotricha longifolia* (Araliaceae) was probably mostly killed by the January 1994 fires at Lane Cove River, but a few scattered plants of this species resprouted.

Of the dicotyledons, the resprouting herb *Brunoniella pumilio* (Acanthaceae) was one of the first species to flower and fruit, and flowered within 6 weeks (February 1994) and fruited within 11 weeks (March 1994), after the fires, in the Lane Cove River area. The resprouting *Leptospermum trinervium* (Myrtaceae) was one of the earliest shrubs to produce some flowers, with one plant in the Narrabeen Lagoon area flowering 17 weeks (May 1994) after the fires. L. McDougall observed *Leptospermum trinervium* flowering from epicormic shoots 5 months after a high intensity fire (of January 1994) at Mona Vale (Benson & McDougall 1998). Myerscough & Clarke (2007) noted that *Leptospermum trinervium* flowered for the first time 307 days after a fire (of January 1991) at Myall Lakes, north of Sydney.

The flowering of some dicotyledon species peaked in the first year, or so, after the fires. For example, the herb *Lobelia dentata* (Lobeliaceae) commonly flowered in the first year after the fires, but no flowering plants of this species could be found in the Lane Cove River area within approximately two to three years after the fires. Klaphake (1995) observed that, at two locations in the Lane Cove River area, *Lobelia dentata* seemed only to appear following fire. Benson & McDougall (1997) found that this species apparently resprouted from a deeply-buried rhizome, on the Lambert Peninsula (just north of Sydney), where it flowered 6–7 months after a fire.

In bushland burnt in January 1994, in the Lane Cove River area, many individuals of the resprouting shrub Lomatia silaifolia (Proteaceae) flowered in December 1994 through to January 1995, though only a few individuals flowered in the following December 1996. Keith (1996) noted Lomatia silaifolia as one of a number of resprouting plant species in the Sydney region that flower abundantly only after fire. Denham & Whelan (2000) studied a site at Bulli Tops, south of Sydney, burnt in September 1992 and observed that most of the Lomatia silaifolia individuals at that locality flowered in the summer of 1993-94. However, only one plant flowered in the subsequent flowering season. Benson & McDougall (2000) noted that, in general, the secondary juvenile period for Lomatia silaifolia in the Sydney region is approximately one year. However, Knox & Clarke (2004) reported that resprouting Lomatia silaifolia did not flower within 3.5 years of experimental fires in grassy woodland on the New England Tablelands, northern NSW. They suggested that the longer primary juvenile period for several plant species in their study area, when compared with that for the same species in other regions, could be attributable to the shorter growing season in the New England Tablelands. However, they did not discuss whether such climatic differences might also affect the secondary juvenile period of species such as *Lomatia silaifolia*.

Some dicotyledon species apparently did not produce fruits the first time that they flowered after the 1994 fires. For example, at one site in the Lane Cove River area, a few seedlings of the fire sensitive (obligate seeder) shrub Persoonia lanceolata (Proteaceae) flowered for the first time after the fire in January 1996. These seedlings only had a few flowers each and most of the seedlings in the same population did not flower at that time. The few plants that did flower had apparently not produced any fruits by June 1996. This apparent initial lack of fruit production may have resulted from a dearth of effective pollinators. Native bees have been recognized as the probable main pollinators of a number of Persoonia species in eastern Australia, including Persoonia lanceolata (Bernhardt & Weston 1996) and tend to forage in areas where floral resources are abundant enough to sustain their activity. So, a very small number of Persoonia lanceolata flowers would not be likely to attract many, if any, bees. Keith et al. (2002a) suggested that most obligate seeders are not likely to produce many seeds in their first post-fire reproductive season, and Whelan (1995) suggested that this could possibly result from poor pollination when flower densities are low or that the resources of the smaller plants might not be sufficient to produce seeds, even though pollination of some flowers may have occurred.

In the Lane Cove River area, the fire sensitive (bradysporous obligate seeder) shrub *Hakea dactyloides* (Proteaceae) was amongst the slowest of the dicotyledons to reproduce, taking approximately 6.5 years after the January 1994 fires to produce a few fruits. Myerscough *et al.* (2000) suggested that the primary juvenile periods for a number of bradysporous obligate seeding species in the family Proteaceae may typically range from between five and eight (or nine) years.

Auld *et al.* (2007) studied a population of *Persoonia lanceolata* (Proteaceae) in bushland in Ku-ring-gai Chase National Park burnt by an extensive wildfire in January 1994. They found that the seedlings did not flower until 6 years after the fire and that the primary juvenile period was 7–8 years.

Fire ephemerals and 'fire-followers'

Bond & van Wilgen (1996) defined fire ephemerals as plant species that emerge only after fires, are short-lived, are usually dead before the next fire and depend on fire for regeneration. Gill (1999) indicated that a few fire ephemerals occur in Australian tall open forests and rainforests, but they appear to be rare in drier eucalypt forests.

Pelargonium inodorum (Geraniaceae) may be one of the few species in the Lane Cove River area that could be regarded as a true 'fire ephemeral'. *Pelargonium inodorum* seemed to be a rather short-lived species, apparently disappearing from the burnt bushland by about 2 years after the fires, in

the Lane Cove River area. Benson & McDougall (1997) noted that Pelargonium inodorum has been recorded growing in burnt Imperata cylindrica grassland and also from the remains of an old campfire. Walsh & McDougall (2004) stated that Pelargonium australe and Pelargonium helmsii had been rarely collected in the alpine and subalpine vegetation of Kosciuszko National Park, before the wildfires of January 2003, but were locally abundant after those fires. They deduced that these species may have long-lived seedbanks. Pelargonium inodorum may also have a longlasting soil seedbank, in the bushland of northern Sydney, where it seems to be mostly evident following disturbance, particularly fire. Another possible fire ephemeral may be Rorippa gigantea (Brassicaceae), which was seen flowering and beginning to form fruit along Deep Creek (Narrabeen Lagoon catchment), within 38 weeks of that area being burnt. Benson & McDougall (1994) noted that the recruitment of Rorippa gigantea seedlings tends to occur after disturbance and may be fire-related.

There may be a number of plant species in the study areas that do not meet the strict definition of 'fire ephemeral' (see above: Bond & van Wilgen 1996), but only tend to be abundant in recently burnt areas. These species could be regarded as 'fire-followers'. For example, Benson & McDougall (1993) observed that the seeds of Actinotus helianthi (Apiaceae) germinate rapidly after fire, or after other disturbance, such as clearing. They also stated that some very limited germination of Actinotus helianthi may occur at undisturbed sites. They noted that an abundance of this species may indicate fire within the previous few years, or that there may have been some other recent disturbance. Actinotus helianthi was very abundant in the burnt bushland of the Lane Cove River area in the first few years after the January 1994 fires, but its abundance declined markedly thereafter. Actinotus helianthi is often super-abundant in recently burnt areas, in the bushland of northern Sydney, but can persist in relatively small numbers in rocky areas that have apparently not been burnt for many years. Auld (2001) noted that some other fast-growing fire sensitive plant species, such as Acacia suaveolens (Fabaceae) and Boronia serrulata (Rutaceae), when found growing in long unburnt areas, may be restricted to the more open patches of habitat associated with sandstone rock outcrops. Actinotus helianthi probably cannot be regarded as a true 'fire ephemeral', given that this species may display some limited germination in undisturbed sites and may be found growing in relatively small numbers in areas of bushland that have apparently not been burnt for a long time. Whelan et al. (2002) described a pattern of post-fire increase in abundance followed by a decline, which occurs in some animal and plant species. They labelled this pattern as 'facilitation and decline'. This pattern is somewhat similar to the post-fire behaviour shown by Actinotus helianthi.

Another example of a 'fire-follower' may be *Pimelea linifolia* subsp. *linifolia* (Thymelaeaceae). Benson & McDougall (2001) indicated that this taxon is generally killed by fire in the bushland of the Sydney region and often germinates in great numbers after fire. Morrison *et al.* (1995) observed that the abundance of *Pimelea linifolia* tended to decline with increasing time-since-fire and Morrison (2002) found that this taxon is more abundant in burnt areas than in unburnt areas, in sandstone vegetation of the Sydney region. Purdie & Slatyer (1976) noted that *Pimelea linifolia* tended to disappear from sclerophyll woodland near Canberra, in areas that had not been burnt for more than a decade. *Pimelea linifolia* subsp. *linifolia* was killed by the January 1994 fires and was super-abundant in parts of the bushland of the Lane Cove River area in the first few years after the fires; its abundance markedly declined in subsequent years. A few individuals can persist in bushland in northern Sydney that has apparently not been burnt for many years.

Delayed seedling establishment in Persoonia pinifolia

Seedling establishment of the obligate seeder shrub Persoonia pinifolia (Proteaceae) was somewhat slow after the January 1994 fires. No seedlings were seen in the vicinity of fatally scorched adults within 27-31 weeks of the fires (at several burnt sites in the Lane Cove River area and one site in the Narrabeen Lagoon catchment area). Post-fire seedlings of this species (11cm, 19cm, 29cm and 44cm tall) were first observed over 2 years after the fires (124 weeks) in the Lane Cove River area in May 1996. This apparently slow postfire establishment could indicate that this species relies upon the importation of seed by birds after widespread fires, or that germination of seed in the soil was delayed. Auld et al. (2000) found that Persoonia pinifolia has a relatively shortlived soil seedbank that depends on annual inputs for its maintenance and that fecundity may possibly diminish with time since fire, due to predation upon its seeds; the fleshy fruits are dispersed by mammals and birds (Buchanan (1989) observed that Persoonia pinifolia seeds were frequently present in pellets regurgitated by pied currawongs (Strepera graculina) in November). For some species, such as Persoonia pinifolia, the primary juvenile period (as strictly defined) may be shorter than the time taken to produce fruits after fires because seedlings are slow to establish after fire.

Responses of rainforest species

Floyd (1989) noted that 'pioneer' rainforest plant species in south-eastern Australia often have features that enable them to recover following fires, e.g. the insulating, corky bark of *Endiandra sieberi* (Lauraceae) and the resprouting capabilities of species such as *Acmena smithii* (Myrtaceae) and *Synoum glandulosum* (Meliaceae). Floyd (1990) observed that some areas of warm temperate rainforest in the Blue Mountains, west of Sydney, were apparently adversely affected by more intense and/or very frequent fires. Chesterfield *et al.* (1990) found that some warm temperate rainforest species, e.g. *Acmena smithii*, resprouted after a wildfire in Victoria, but some other species were killed. Floyd (1990) and Keith (2004) indicated that a series of fires, within a few decades, can lead to a deterioration of patches of warm temperate rainforest in southern NSW. Campbell & Clarke (2006) observed that most woody understorey rainforest species vigorously resprouted after some fires in wet sclerophyll forest, on the New England Tablelands of northern NSW. However, they found that there was generally a lack of post-fire seedling recruitment of these rainforest species. One of the areas that they studied (in Washpool National Park) was burnt by high intensity fire in 2002, but had not been previously burnt for at least 50 years.

A few rainforest species grow in some of the more sheltered, moist and fertile sites in the study areas. The wildfires in the study areas were generally of such an apparently high intensity that many of the (usually) wetter areas of vegetation, such as those containing rainforest species, were burnt. The majority of rainforest tree and shrub species in the Lane Cove River and Narrabeen Lagoon catchment areas resprouted following the fires of January 1994. For example, individuals of the species *Ceratopetalum apetalum* (Cunoniaceae), *Schizomeria ovata* (Cunoniaceae), *Trochocarpa laurina* (Ericaceae) and *Acmena smithii* (Myrtaceae) resprouted after experiencing 100% leaf scorch in the fires.

Responses of exotic species

Keith (1996) considered that fire might enhance the invasion of bushland by some weed species, particularly where other forms of disturbance are also present and suggested that the resulting competition might lead to the decline or extinction of some populations of native plant species. Gill (1999) indicated that some exotic plants, such as Lantana camara (Verbenaceae), can act as 'fuel species', perhaps suggesting that concentrations of such weeds may intensify fires. Milberg & Lamont (1995) observed that weed species tended to increase, following fire, in some linear roadside woodland remnants in Western Australia. Walsh & McDougall (2004) found that the weed Cirsium vulgare (Asteraceae) seemed to increase in the treeless subalpine vegetation of Kosciuszko National Park, following the wildfires of January 2003. Some highly invasive weeds may take advantage of fires to spread from weed-infested areas into adjoining bushland. Whelan et al. (2002) noted that some weed species probably do not have a long-lived, dormant seedbank and suggested that such weeds may rely on long-distance seed dispersal to re-establish populations in burnt areas after fire. In some circumstances, fires may have the potential to accelerate weed invasion of native vegetation, but weed infestation can occur in the absence of fire, especially when other forms of disturbance occur. Reidy et al. (2005) recorded observations of weed and native plant regeneration in Lane Cove National Park, following the fires of January 1994 and discussed the effectiveness of bush regeneration efforts after the fires.

Generally, exotic species in the Lane Cove River and Narrabeen Lagoon catchments recovered vigorously following the January 1994 wildfires. Many populations of weed species rapidly re-established themselves by growing from soil seedbanks and/or by resprouting after the fires. For example, in the study areas, the troublesome environmental weeds *Ligustrum sinense* (Oleaceae), *Rubus* ?discolor (Rosaceae) and *Lantana camara* (Verbenaceae) all resprouted quickly and vigorously after the fires. These resprouting weed species subsequently flowered and fruited profusely in the burnt parts of the Lane Cove River area, within a handful of years after the fires of January 1994.

In the Lane Cove River bushland, seedlings of the exotic shrub Chrysanthemoides monilifera subsp. monilifera (Asteraceae) were observed 19 weeks after the January 1994 fires, growing in the immediate vicinity of fatally scorched adult plants. These post-fire seedlings flowered in September 1995 and had produced mature fruits by December 1995. It seems that Chrysanthemoides monilifera subsp. monilifera may have as fast a rate of maturation as (if not faster than) a number of fire-sensitive native shrub species, of a similar size, in the study areas. This could be one factor enabling this weed to compete with native plants. Weiss (1984) and DEC NSW (2006c) noted that Chrysanthemoides monilifera subsp. monilifera is killed by fire. Wark et al. (1987) and Wark (1999) observed that there was prolific germination of this taxon, following wildfire in some bushland areas of the north-eastern Otway ranges, in Victoria. Weiss et al. (1998) noted that Chrysanthemoides monilifera subsp. monilifera can flower rapidly in burnt areas.

A few of the exotic species recorded post-fire, e.g. Helianthus annuus (Asteraceae), possibly grew from seed deliberately introduced by people into the bushland after the January 1994 fires, to feed the surviving populations of native birds. Some of the other exotic species may have entered the burnt bushland as seed from adjoining unburnt areas, in the aftermath of the fires e.g. the seeds of many exotic Asteraceae species could easily have been blown into the burnt areas from adjoining unburnt weed thickets and surrounding suburban areas. Also, birds and flowing streams may have introduced some weed seed into the burnt bushland after the fires. Buchanan (1989) found evidence to indicate that the pied currawong (Strepera graculina) is an important agent in the dispersal of some major environmental weeds, such as Ligustrum sinense, Ligustrum lucidum and Lantana camara, in the Lane Cove River area.

Concluding remarks

In general, the majority of the observations recorded in this study are similar to the findings of many other researchers. Most of the recorded differences between various studies, in parameters such as the time to first flowering after fire, or in the mode of regeneration for a given species, are probably due to natural variations in populations and conditions between different study sites and study dates. Benson & McDougall (1998, 2005) briefly discussed such variations, with respect to some contradictory observations of fire responses reported for some of the species in their *Ecology of*

Sydney Plant Species series of papers. However, it is possible that some of the discrepancies in the recorded modes of regeneration of particular species may be due to occasional errors by observers. For example, following the January 1994 fires in the Lane Cove River area, I observed *Lobelia dentata* flowering in many long unburnt localities, where I had not previously recorded this species. Subsequently, I assumed that many of these plants were probably seedlings, even though I had not seen any cotyledons on these plants, immediately after their first post-fire emergence. However, my assumption may have been incorrect, as Benson & McDougall (1997) observed that *Lobelia dentata* apparently resprouted after fire from a very deeply-buried fleshy rhizome, at one locality in the Sydney region.

The observations reported in this paper provide useful information for the conservation of bushland in the broader Sydney region, and in particular for planning of fire management for bushland in the Lane Cove River and Narrabeen Lagoon catchments. For example, basic information such as the time a plant species takes to first produce fruits, following fire, can be used in the estimation of 'fire interval thresholds', as discussed by Bradstock *et al.* (1995) and Keith *et al.* (2002b). Such guidelines for bushland management can be refined, as more researchers record their observations of the responses of plants to various fires in different areas of bushland.

Acknowledgements

I would like to thank the librarians at the National Herbarium of New South Wales, Royal Botanic Gardens, Sydney for providing access to some unpublished floristic lists. I appreciate the encouragement that was provided by Doug Benson and Lyn McDougall, when they welcomed contributions to their *Ecology of Sydney Plant Species* project. I would also like to thank the anonymous referee for making many detailed suggestions that helped to improve the organisation and presentation of this paper, Tony Auld for suggesting the term 'fire-followers' and drawing my attention to his work on *Persoonia lanceolata*, and Doug Benson for creating Tables 1 and 2.

References

- Adams, P.B. & Lawson, S.D. (1984) The effects of bushfire on Victorian epiphytic and lithophytic orchids. *The Orchadian* 7(12): 282–286.
- Auld, T.D. (1986) Population dynamics of the shrub Acacia suaveolens (Sm.) Willd.: Fire and the transition to seedlings. Australian Journal of Ecology 11: 373–385.
- Auld, T.D. (1987) Post-fire demography in the resprouting shrub Angophora hispida (Sm.) Blaxell: Flowering, seed production, dispersal, seedling establishment and survival. Proceedings of the Linnean Society of New South Wales 109(4): 259–269.

- Auld, T.D. (1996) Ecology of the Fabaceae in the Sydney region: fire, ants and the soil seedbank. *Cunninghamia* 4(4): 531–551.
- Auld, T.D. (2001) The ecology of the Rutaceae in the Sydney region of south-eastern Australia: Poorly known ecology of a neglected family. *Cunninghamia* 7(2): 213–239.
- Auld, T.D. & Denham, A.J. (2006) How much seed remains in the soil after a fire? *Plant Ecology* 187: 15–24.
- Auld, T.D., Denham, A.J. & Turner, K (2007) Dispersal and recruitment dynamics in the fleshy-fruited *Persoonia lanceolata* (Proteaceae). *Journal of Vegetation Science* 18: 903–910.
- Auld, T.D., Keith, D.A. & Bradstock, R.A. (2000) Patterns in longevity of soil seedbanks in fire-prone communities of southeastern Australia. *Australian Journal of Botany* 48(4): 539–548.
- Auld, T.D. & Myerscough, P.J. (1986) Population dynamics of the shrub Acacia suaveolens (Sm.) Willd.: Seed production and predispersal seed predation. Australian Journal of Ecology 11: 219–234.
- Auld, T.D. & O'Connell, M.A. (1991) Predicting patterns of postfire germination in 35 eastern Australian Fabaceae. *Australian Journal of Ecology* 16: 53–70.
- Auld, T.D. & Tozer, M. (1995) Patterns in emergence of Acacia and Grevillea seedlings after fire. Proceedings of the Linnean Society of New South Wales 115: 5–15.
- Beardsell, D.V., Clements, M.A., Hutchinson, J.F. & Williams, E.G. (1986) Pollination of *Diuris maculata* R. Br. (Orchidaceae) by floral mimicry of the native legumes *Daviesia* spp. and *Pultenaea scabra* R. Br.. *Australian Journal of Botany* 34: 165–173.
- Beecroft Cheltenham Civic Trust (1976) A plan of management for Pennant Hills Park and some surrounding bushland (Beecroft Cheltenham Civic Trust: Sydney).
- Benson, D.H. (1979) Native vegetation of Deep Creek, Narrabeen. (Unpublished report).
- Benson, D.H. (1981) Vegetation of the Agnes Banks sand deposit, Richmond, New South Wales. *Cunninghamia* 1(1): 35–57.
- Benson, D.H. (1985) Maturation periods for fire-sensitive shrub species in Hawkesbury sandstone vegetation. *Cunninghamia* 1(3): 339–349.
- Benson, D. & Howell, J. (1990) Taken for granted: the bushland of Sydney and its suburbs (Kangaroo Press: Kenthusrt).
- Benson, D. & Howell, J. (1994) The natural vegetation of the Sydney 1:100 000 map sheet. *Cunninghamia* 3(4): 677–787.
- Benson, D. & McDougall, L. (1993) Ecology of Sydney plant species, part 1: Ferns, fern-allies, cycads, conifers and dicotyledon families Acanthaceae to Asclepiadaceae. *Cunninghamia* 3(2): 257–422.
- Benson, D. & McDougall, L. (1994) Ecology of Sydney plant species, part 2: Dicotyledon families Asteraceae to Buddlejaceae. *Cunninghamia* 3(4): 789–1004.
- Benson, D. & McDougall, L. (1995) Ecology of Sydney plant species, part 3: Dicotyledon families Cabombaceae to Eupomatiaceae. *Cunninghamia* 4(2): 217–431.
- Benson, D. & McDougall, L. (1996) Ecology of Sydney plant species, part 4: Dicotyledon family Fabaceae. *Cunninghamia* 4(4): 553–752.
- Benson, D. & McDougall, L. (1997) Ecology of Sydney plant species, part 5: Dicotyledon families Flacourtiaceae to Myrsinaceae. *Cunninghamia* 5(2): 330–544.
- Benson, D. & McDougall, L. (1998) Ecology of Sydney plant species, part 6: Dicotyledon family Myrtaceae. *Cunninghamia* 5(4): 808–987.
- Benson, D. & McDougall, L. (1999) Ecology of Sydney plant species, part 7a: Dicotyledon families Nyctaginaceae to Primulaceae. *Cunninghamia* 6(2): 402–509.

- Benson, D. & McDougall, L. (2000) Ecology of Sydney plant species, part 7b: Dicotyledon families Proteaceae to Rubiaceae. *Cunninghamia* 6(4): 1016–1202.
- Benson, D. & McDougall, L. (2001) Ecology of Sydney plant species, part 8: Dicotyledon families Rutaceae to Zygophyllaceae. *Cunninghamia* 7(2): 241–462.
- Benson, D. & McDougall, L. (2002) Ecology of Sydney plant species, part 9: Monocotyledon families Agavaceae to Juncaginaceae. *Cunninghamia* 7(4): 695–930.
- Benson, D. & McDougall, L. (2005) Ecology of Sydney plant species, part 10: Monocotyledon families Lemnaceae to Zosteraceae. *Cunninghamia* 9(1): 16–212.
- Benwell, A.S. (1998) Post-fire seedling recruitment in coastal heathland in relation toregeneration strategy and habitat. *Australian Journal of Botany* 46: 75–101.
- Bernhardt, P. & Weston, P.H. (1996) The pollination ecology of *Persoonia* (Proteaceae) in eastern Australia. *Telopea* 6(4): 775–804.
- Bond, W.J. & van Wilgen, B.W. (1996) *Fire and plants* (Chapman & Hall: London).
- Bradstock, R.A. (1990) Demography of woody plants in relation to fire: Banksia serrata Lf. and Isopogon anemonifolius (Salisb.) Knight. Australian Journal of Ecology 15: 117–132.
- Bradstock, R.A. (1991) The role of fire in establishment of seedlings of serotinous species from the Sydney region. *Australian Journal of Botany* 39: 347–356.
- Bradstock, R.A. (1995) Demography of woody plants in relation to fire: *Telopea speciosissima*. *Proceedings of the Linnean Society of New South Wales* 115: 25–33.
- Bradstock, R.A., Gill, A.M., Hastings, S.M. & Moore, P.H.R. (1994) Survival of serotinous seedbanks during bushfires: Comparative studies of *Hakea* species from southeastern Australia. *Australian Journal of Ecology* 19: 276–282.
- Bradstock, R.A., Keith, D.A. & Auld, T.D. (1995) Fire and conservation: imperatives and constraints on managing for diversity. pp. 323–333. In: R.A. Bradstock, T.D. Auld, D.A.Keith, R.T. Kingsford, D. Lunney & D.P. Sivertsen (eds.) *Conserving biodiversity:Threats and solutions* (Surrey Beatty & Sons: Sydney).
- Bradstock, R.A. & Myerscough, P.J. (1981) Fire effects on seed release and the emergence and establishment of seedlings in *Banksia ericifolia* L.f.. *Australian Journal of Botany* 29: 521– 531.
- Bradstock, R.A. & Myerscough, P.J. (1988) The survival and population response to frequent fires of two woody resprouters *Banksia serrata* and *Isopogon anemonifolius*. *Australian Journal of Botany* 36: 415–431.
- Bradstock, R.A. & O'Connell, M.A. (1988) Demography of woody plants in relation to fire: *Banksia ericifolia* L.f. and *Petrophile pulchella* (Schrad) R.Br. *Australian Journal of Ecology* 13(4): 505–518.
- Bradstock, R.A., Tozer, M.G. & Keith, D.A. (1997) Effects of high frequency fire on floristic composition and abundance in a fireprone heathland near Sydney. *Australian Journal of Botany* 45: 641–655.
- Bradstock, R.A., Williams, J.E. & Gill, A.M. (eds.) (2002) Flammable Australia: The fire regimes and biodiversity of a continent (Cambridge University Press: Cambridge).
- Brown, C. & Tohver, L. (1995) *Bushfire! Looking to the future* (Envirobook Publishing: Sydney).
- Buchanan, R.A. (1989) Pied currawongs (*Strepera graculina*): their diet and role in weed dispersal in suburban Sydney, New South Wales. *Proceedings of the Linnean Society of New South Wales* 111(4): 241–255.

- Campbell, M.L. & Clarke, P.J. (2006) Response of montane wet sclerophyll forest understorey species to fire: Evidence from high and low intensity fires. *Proceedings of the Linnean Society* of New South Wales 127: 63–73.
- Carolin, R.C. & Tindale, M.D. (1994) Flora of the Sydney region (Reed: Chatswood).
- Cary, G.J. & Morrison, D.A. (1995) Effects of fire frequency on plant species composition of sandstone communities in the Sydney region: Combinations of inter-fire intervals. *Australian Journal of Ecology* 20: 418–426.
- Chesterfield, E.A., Taylor, S.J. & Molnar, C.D. (1990) Recovery after wildfire: warm temperate rainforest at Jones Creek. Technical Report Series No. 101. (Arthur Rylah Institute for Environmental Research: Melbourne).
- Clark, S.S. (1988) Effects of hazard-reduction burning on populations of understorey plant species on Hawkesbury sandstone. *Australian Journal of Ecology* 13: 473–484.
- Clark, S.S. & McLoughlin, L.C. (1986) Historical and biological evidence for fire regimes in the Sydney region prior to the arrival of Europeans: implications for future bushland management. *Australian Geographer* 17: 101–112.
- Clarke, P.J. & Benson, D.H. (1987) Vegetation survey of Lane Cove River State Recreation Area (Royal Botanic Gardens: Sydney).
- Clarke, P.J. & Knox, K.J.E. (2002) Post-fire response of shrubs in the tablelands of eastern Australia: do existing models explain habitat differences? *Australian Journal of Botany* 50: 53–62.
- Clarke, P.J., Knox, K.J.E., Wills, K.E. & Campbell, M. (2005) Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. *Journal of Ecology* 93(3): 544–555.
- Costello, S (ed.) (1994) New South Wales burning. (Sesta Pty Ltd: Melbourne).
- Coveny, R. (1965–1975) Deep Creek, Narrabeen plant checklist (Unpublished).
- Coveny, R. (1965–1978) Cheltenham plant checklist (Unpublished).
- Davies, S.J. & Myerscough, P.J. (1991) Post-fire demography of the wet-mallee *Eucalyptus luehmanniana* F. Muell. (Myrtaceae). *Australian Journal of Botany* 39: 459–466.
- Denham, A.J. & Auld, T.D. (2002) Flowering, seed dispersal, seed predation and seedling recruitment in two pyrogenic flowering resprouters. *Australian Journal of Botany* 50: 545–557.
- Denham, A.J. & Whelan, R.J. (2000) Reproductive ecology and breeding system of *Lomatia silaifolia* (Proteaceae) following a fire. *Australian Journal of Botany* 48(2): 261–269.
- Department of Environment and Conservation NSW (2005a) *Lane Cove National Park fire management plan* (National Parks and Wildlife Service: Sydney).
- Department of Environment and Conservation NSW (2005b) Kuring-gai Chase and Garigal National Parks fire management plan (National Parks and Wildlife Service: Sydney).
- Department of Environment and Conservation NSW (2006a) *Lane Cove National Park, Wallumatta Nature Reserve and Dalrymple Hay Nature Reserve fire management strategy* (National Parks and Wildlife Service: Sydney).
- Department of Environment and Conservation NSW (2006b) Garigal National Park fire management strategy (National Parks and Wildlife Service: Sydney).
- Department of Environment and Conservation NSW (2006c) Invasion of native plant communities by Chrysanthemoides monilifera (bitou bush and boneseed): Threat abatement plan. (DEC NSW: Hurstville).

- Department of Environment, Sport and Territories (1996) *Fire and biodiversity: The effects and effectiveness of fire management* (Biodiversity Unit, DEST: Canberra).
- Fairley, A. & Moore, P. (1989) *Native plants of the Sydney district: an identification guide* (Kangaroo Press: Kenthurst).
- Floyd, A.G. (1989) Rainforest trees of mainland south-eastern Australia (Inkata Press: Melbourne).
- Floyd, A.G. (1990) Australian rainforests in New South Wales (Surrey Beatty & Sons Pty Ltd: Sydney).
- Fox, M.D. (1988) Understorey changes following fire at Myall Lakes, New South Wales. *Cunninghamia* 2(1): 85–95.
- Fox, M.D. & Fox, B.J. (1986) The effect of fire frequency on the structure and floristic composition of a woodland understorey. *Australian Journal of Ecology* 11: 77–85.
- Gill, A.M. (1975) Fire and the Australian flora: a review. Australian Forestry 38(1): 4–25.
- Gill, A.M. (1981) Adaptive responses of Australian vascular plant species to fires. pp. 243–271. In: A.M. Gill, R.H. Groves & I.R. Noble (eds.) *Fire and the Australian biota* (Australian Academy of Science: Canberra).
- Gill, A.M. (1999) Biodiversity and bushfires: an Australia-wide perspective on plant-species changes after a fire event. pp. 9–53.
 In: A.M. Gill, J.C.Z. Woinarski & A. York (eds.) Australia's biodiversity responses to fire. Biodiversity Technical Paper, No. 1 (Department of the Environment and Heritage: Canberra).
- Gill, A.M. & Bradstock, R.A. (1992) A national register for the fire responses of plant species. *Cunninghamia* 2(4): 653–660.
- Gill, A.M. & Bradstock, R. (1995) Extinction of biota by fires. pp. 309–322. In: R.A. Bradstock, T.D. Auld, D.A. Keith, R.T. Kingsford, D. Lunney & D.P. Sivertsen (eds.) *Conservingbiodiversity: Threats and solutions* (Surrey Beatty & Sons: Sydney).
- Gill, A.M., Groves, R.H. & Noble, I.R. (eds.)(1981). *Fire and the Australian biota* (Australian Academy of Science: Canberra).
- Gill, A.M. & Moore, P.H.R. (1996) Regional and historical fire weather patterns pertinent to the January 1994 Sydney bushfires. *Proceedings of the Linnean Society of New South Wales* 116: 27–36.
- Gill, A.M. & Moore, P.H.R. (1998) Big versus small fires: the bushfires of greater Sydney, January 1994. pp. 49–68. In: J.M. Moreno (ed.) *Large forest fires*. (Backhuys Publishers:Leiden).
- Gill, A.M., Moore, P.H.R. & Armstrong, J.P. (1991) *Bibliography* of fire ecology in Australia. Edition 3 (Department of Bush Fire Services).
- Gill, A.M., Moore, P.H.R. & Martin, W.K. (1994) Bibliography of fire ecology in Australia (including fire science and fire management). Edition 4 (NSW National Parks and Wildlife Service: Hurstville).
- Gill, A.M., Woinarski, J.C.Z. & York, A. (1999) Australia's biodiversity – responses to fire. Biodiversity Technical Paper, No. 1 (Department of the Environment and Heritage: Canberra).
- Harden, G.J. (ed.) (1990–1993) *Flora of New South Wales*. Vols. 1–4 (New South Wales University Press: Sydney).
- Harden, G.J. (ed.) (2002) *Flora of New South Wales*. Vol. 2, Revised Edition (University of New South Wales Press: Sydney).
- Harden, G.J. & Murray, L.J. (eds.) (2000) Supplement to Flora of New South Wales, Volume 1 (University of New South Wales Press Ltd: Sydney).
- Johnson, K.A., Morrison, D.A. & Goldsack, G. (1994) Post-fire flowering patterns in *Blandfordia nobilis* (Liliaceae). *Australian Journal of Botany* 42: 49–60.
- Jones, D.L. (1988) *Native orchids of Australia* (Reed Books Pty Ltd: Sydney).

- Jones, D.L. (2006) A complete guide to native orchids of Australia, including the island territories. (Reed New Holland: Sydney).
- Keith, D. (1992) Fire and the conservation of native bushland plants. *National Parks Journal* 36(5): 20–22.
- Keith, D. (1996) Fire-driven extinction of plant populations: a synthesis of theory and review of evidence from Australian vegetation. *Proceedings of the Linnean Society of New South Wales* 116: 37–78.
- Keith, D.A. (2004) Ocean shores to desert dunes: the native vegetation of New South Wales and the ACT (Department of Environment and Conservation(NSW): Hurstville).
- Keith, D.A. & Bradstock, R.A. (1994) Fire and competition in Australian heath: a conceptual model and field investigations. *Journal of Vegetation Science* 5(3): 347–354.
- Keith, D.A., McCaw, W.L. & Whelan, R.J. (2002a) Fire regimes in Australian heathlands and their effects on plants and animals. pp. 199–237. In: R.A. Bradstock, J.E. Williams & A.M.
- Gill (eds.) Flammable Australia: The fire regimes and biodiversity of a continent (Cambridge University Press: Cambridge).
- Keith, D.A., Williams, J.E. & Woinarski, J.C.Z. (2002b) Fire management and biodiversity conservation: key approaches and principles. pp. 401–425. In: R.A. Bradstock, J.E. Williams & A.M. Gill (eds.) Flammable Australia: The fire regimes and biodiversity of a continent (Cambridge University Press: Cambridge).
- Kenny, B.J. (2000) Influence of multiple fire-related germination cues on three Sydney *Grevillea* (Proteaceae) species. *Austral Ecology* 25(6): 664–669.
- Klaphake, V. (1995) Case study: Warraroon Reserve in the Lane Cove River valley. pp.40–43. In: C. Brown & L. Tohver (eds.) Bushfire! Looking to the future. (Envirobook Publishing: Sydney).
- Knox, K.J.E. & Clarke, P.J. (2004) Fire response syndromes of shrubs in grassy woodlands in the New England Tableland Bioregion. *Cunninghamia* 8(3): 348–353.
- Kubiak, P.J. (1986–1989) A floristic list of the natural vegetation of the Lane Cove River catchment area (Unpublished).
- Kubiak, P.J. (1992) Narrabeen Lagoon catchment area floristic list (excluding exotic species) (Unpublished).
- Kubiak, P.J. (1996) Lane Cove National Park floristic list (excluding exotic species) (Unpublished).
- Lane Cove River SRA Trust (1983) *Lane Cove River State Recreation Area* (Lane Cove River State Recreation Area Trust: Chatswood).
- Martyn, J. (1994) A field guide to the bushland of the upper Lane Cove Valley (STEP Inc.: Turramurra).
- McLoughlin, L. (1985) *The middle Lane Cove River: a history and a future.* Monograph No. 1 (Centre for Environmental and Urban Studies, Macquarie University: Sydney).
- McLoughlin, L. & Wyatt, M. (1993) The upper Lane Cove: History, heritage, bibliography (Graduate School of the Environment, Macquarie University: Sydney).
- Milberg, P. & Lamont, B.B. (1995) Fire enhances weed invasion of roadside vegetation in southwestern Australia. *Biological Conservation* 73: 45–49.
- Morris, E.C. & Myerscough, P.J. (1988) Survivorship, growth and self-thinning in *Banksia ericifolia*. Australian Journal of Ecology 13: 181–189.
- Morrison, D.A. (1995) Some effects of low-intensity fires on populations of co-occurring small trees in the Sydney region. *Proceedings of the Linnean Society of New South Wales* 115: 109–119.

- Morrison, D.A. (2002) Effects of fire intensity on plant species composition of sandstone communities in the Sydney region. *Austral Ecology* 27(4): 433–441.
- Morrison, D.A., Buckney, R.T., Bewick, B.J. & Cary, G.J. (1996) Conservation conflicts over burning bush in south-eastern Australia. *Biological Conservation* 76: 167–175.
- Morrison, D.A., Cary, G.J., Pengelly, S.M., Ross, D.G., Mullins, B.J., Thomas, C.R. & Anderson, T.S. (1995) Effects of fire frequency on plant species composition of sandstone communities in the Sydney region: Inter-fire interval and timesince-fire. *Australian Journal of Ecology* 20: 239–247.
- Morrison, D.A. & Renwick, J.A. (2000) Effects of variation in fire intensity on regeneration of co-occurring species of small trees in the Sydney region. *Australian Journal of Botany* 48(1): 71–79.
- Myerscough, P.J. (1998) Ecology of Myrtaceae with special reference to the Sydney region. *Cunninghamia* 5(4): 787–807.
- Myerscough, P.J. & Clarke, P.J. (2007) Burnt to blazes: landscape fires, resilience and habitat interaction in frequently burnt coastal heath. *Australian Journal of Botany* 55: 91–102.
- Myerscough, P.J., Clarke, P.J. & Skelton, N.J. (1995) Plant coexistence in coastal heaths: Floristic patterns and species attributes. *Australian Journal of Ecology* 20: 482–493.
- Myerscough, P.J., Whelan, R.J. & Bradstock, R.A. (2000) Ecology of Proteaceae with special reference to the Sydney region. *Cunninghamia* 6(4): 951–1015.
- National Trust of Australia (NSW) (1980) Narrabeen Lagoon survey. (National Trust of Australia (NSW): Sydney).
- Nieuwenhuis, A. (1987) The effect of fire frequency on the sclerophyll vegetation of the West Head, New South Wales. *Australian Journal of Ecology* 12: 373–385.
- NSW National Parks and Wildlife Service (1998a) Lane Cove National Park plan of management.
- NSW National Parks and Wildlife Service (1998b) Garigal National Park plan of management.
- NSW National Parks and Wildlife Service (2002) Draft fire management plan – Lane Cove National Park. (NSW NPWS: Sydney).
- NSW State Coroner (1995) New South Wales bushfire inquiry findings. (Coroners Court: Westmead).
- Ooi, M.K.J., Auld, T.D. & Whelan, R.J. (2006) Dormancy and the fire-centric focus: Germination of three *Leucopogon* species (Ericaceae) from south-eastern Australia. *Annals of Botany* 98: 421–430.
- Ooi, M.K.J., Auld, T.D. & Whelan, R.J. (2007) Distinguishing between persistence and dormancy in soil seed banks of three shrub species from fire-prone southeastern Australia. *Journal of Vegetation Science* 18: 405–412.
- Pannell, J.R. & Myerscough, P.J. (1993) Canopy-stored seed banks of *Allocasuarina distyla* and *A. nana* in relation to time since fire. *Australian Journal of Botany* 41:1–9.
- Purdie, R.W. (1977) Early stages of regeneration after burning in dry sclerophyll vegetation. I : Regeneration of the understorey by vegetative means. *Australian Journal of Botany* 25: 21–34.
- Purdie, R.W. & Slatyer, R.O. (1976) Vegetation succession after fire in sclerophyll woodland communities in south-eastern Australia. *Australian Journal of Ecology* 1: 223–236.
- Pyke, G.H. (1983) Relationship between time since fire and flowering in *Telopea speciosissima* R. Br. and *Lambertia formosa* Sm.. Australian Journal of Botany 31: 293–296.
- Reidy, M., Chevalier, W. & McDonald, T. (2005) Lane Cove National Park Bushcare volunteers: Taking stock, 10 years on. *Ecological Management and Restoration* 6(2): 94–104.

- Robinson, L. (1991) Field guide to the native plants of Sydney (Kangaroo Press: Kenthusrt).
- Sheringham, P.R. & Sanders, J.M. (1993) Vegetation survey of Garigal National Park and surrounding crown lands (NSW National Parks and Wildlife Service: Sydney).
- Siddiqi, M.Y., Carolin, R.C. & Myerscough, P.J. (1976) Studies in the ecology of coastal heath in New South Wales. III. Regrowth of vegetation after fire. *Proceedings of the Linnean Society of New South Wales* 101(1): 53–63.
- Smith, J. & Smith, P. (1993) Vegetation and fauna of Pennant Hills Park (report prepared for Hornsby Shire Council).
- STEP Inc. (1985) A plan of management for South Turramurra bushland. Second edition (STEP Inc.: Turramurra).
- Thomas, P.B., Morris, E.C. & Auld, T.D. (2007) Response surfaces for the combined effects of heat shock and smoke on germination of 16 species forming soil seed banks in south-east Australia. *Austral Ecology* 32: 605–616.
- Walsh, N.G. & McDougall, K.L. (2004) Progress in the recovery of the flora of treeless subalpine vegetation in Kosciuszko National Park after the 2003 fires. *Cunninghamia* 8(4): 439–452.
- Wark, M.C. (1996) Regeneration of heath and heath woodland in the north-eastern Otway Ranges three to ten years after the wildfire of February 1983. *Proceedings of the Royal Society of Victoria* 108(2): 121–142.
- Wark, M.C. (1997) Regeneration of some forest and gully communities in the Angahook–Lorne State Park (north-eastern Otway Ranges) 1–10 years after the wildfire of February 1983. *Proceedings of the Royal Society of Victoria* 109(1): 7–36.
- Wark, M.C. (1999) Regeneration of *Melaleuca lanceolata* Otto. and *Melaleuca squarrosa* Donn ex Sm. communities of the coast and river valleys in the north-eastern Otway Ranges 1–10 years after the wildfire of February 1983. *Proceedings of the Royal Society of Victoria* 111(2): 173–213.
- Wark, M.C. (2000) After the 1983 wildfire: the Anglesea vegetation regeneration project – how it grew. *The Victorian Naturalist* 117(3): 96–106.
- Wark, M.C., White, M.D., Robertson, D.J. & Marriott, P.F. (1987) Regeneration of heath and heath woodland in the north-eastern Otway Ranges following the wildfire of February 1983. *Proceedings of the Royal Society of Victoria* 99(2): 51–88.
- Warton, D.I. & Wardle, G.M. (2003) Site-to-site variation in the demography of a fire-affected perennial, *Acacia suaveolens*, at Ku-ring-gai Chase National Park, New South Wales, Australia. *Austral Ecology* 28: 38–47.
- Weiss, P.W. (1984) Seed characteristics and regeneration of some species in invaded coastal communities. *Australian Journal of Ecology* 9(2): 99–106.
- Weiss, P.W., Adair, R.J. & Edwards, P.B. (1998) Chrysanthemoides monilifera (L.) T. Norl. pp.49–61.In: F.D. Panetta, R.H. Groves
 & R.C.H. Shepherd (eds.) The biology of Australian weeds. Volume 2 (R.G. and F.J. Richardson: Melbourne).
- Weston, P.H., Perkins, A.J. & Entwisle, T.J. (2005) More than symbioses: orchid ecology, with examples from the Sydney Region. *Cunninghamia* 9(1): 1–15.
- Whelan, R.J. (1995) *The ecology of fire* (Cambridge University Press: Cambridge).
- Whelan, R.J., Rodgerson, L., Dickman, C.R. & Sutherland, E.F. (2002) Critical life cycles of plants and animals: developing a process-based understanding of population changes in fire-prone landscapes. pp. 94–124. In: R.A. Bradstock, J.E. Williams & A.M. Gill (eds.) *Flammable Australia: The fire regimes and biodiversity of a continent*. (Cambridge University Press: Cambridge).

- Whelan, R.J. & York, J. (1998) Post-fire germination of Hakea sericea and Petrophile sessilis after spring burning. Australian Journal of Botany 46: 367–376.
- Williams, J.E. & Gill, A.M. (1995) The impact of fire regimes on native forests in eastern New South Wales. Environmental Heritage Monograph Series No. 2 (NSW National Parks and Wildlife Service: Hurstville).
- Williams, J.E., Whelan, R.J. & Gill, A.M. (1994) Fire and environmental heterogeneity in southern temperate forest ecosystems: implications for management. *Australian Journal* of Botany 42: 125–137.
- Williams, P.R. & Clarke, P.J. (2006) Fire history and soil gradients generate floristic patterns in montane sedgelands and wet heaths of Gibraltar Range National Park. *Proceedings of the Linnean Society of New South Wales* 127: 27–38.
- Zammit, C. (1988) Dynamics of resprouting in the lignotuberous shrub *Banksia oblongifolia*. *Australian Journal of Ecology* 13: 311–320.
- Zammit, C. & Westoby, M. (1987) Population structure and reproductive status of two *Banksia* shrubs at various times after fire. *Vegetatio* 70: 11–20.

Manuscript accepted 31 March 2009

Appendix 1. Observations on fire responses (after 100% leaf scorch) of vascular plants in the Lane Cove River (LCR) (observations mainly Jan 1994 – Oct 1999) and Narrabeen Lagoon (NL) (Mar – Oct 1994) catchments, following the fires of January 1994.

R = majority of adult plants resprouted after the fires;

 \mathbf{K} = majority of adult plants killed by the fires;

 \mathbf{r} = a small proportion of adult plants of this species resprouted after the fires;

 \mathbf{k} = a small proportion of adult plants of this species were killed by the fires;

 \mathbf{pR} = probably resprouted after the fires; \mathbf{pK} = Probably killed by the fires;

?R= possibly resprouted; **?K** = Possibly killed.

Note: 'possibly' = say 50-70% sure of observation; 'probably' = say 80-90% sure of observation.

Seedlings first observed = first time seedlings noticed (adv = advanced seedlings).

First flowering and fruiting times(or spore production) after the fires are shown for resprouted plants (Resp) and plants from seed. (If unclear whether plants grew from seed or resprouted, then time of first flowering or fruiting bridges both columns and is underlined).

Flowering time in **bold type** = sizable proportion of population was flowering (e.g. when first flowering involved only a few plants).

Primary and secondary juvenile periods are given for some species.

Probable or **possible peaks of post-fire flowering** (prob.pk.pf.flower.; poss.pk.pf.flower.) or **fruiting** (prob.pk.pf.fruit.; poss.pk.pf.fruit.) are given in the left hand column.

* = exotic species (introduced plants growing in bushland, or in weed thickets and patches of weeds in close proximity to bushland). Other abbreviations: **grn**. = green fruit; **imm**. = immature fruit; **ri**. = ripe fruit; **(shd)** = shedding seed or spores; **w** = weeks; **y** = year(s); **m.i.f**. = moderate intensity fire; (1) = one plant; **buds** = flowers in bud; **prob.** = probably; **c**.= approximately.

Family/Species	Fire Response		Seedlings	First flowering		First fruiting		Juvenile periods	
(Post–fire fl, fr peaks)	LCR	NL	first observed	l Resp	Seed	Resp	Seed	Primary	Secondary
PTERIDOPHYTES									
Adiantaceae									
Adiantum aethiopicum (s.lat.)	R	R				50w			c.1y
Adiantum hispidulum	R					41w			41w-(shd)
Aspleniaceae									
Asplenium australasicum	Κ								
Asplenium flabellifolium	R	R				26w			26w
Blechnaceae									
Blechnum ambiguum	R	R				50w			63w-(shd)
Blechnum camfieldii		R				38w			38w
Blechnum cartilagineum	R	R				10w			10w-(shd)
Blechnum indicum	R	R				10w			10w-(shd)
Blechnum nudum	R					33w			33w-(shd)
Doodia aspera	R	R				23w			23w
Doodia caudata	R					23w			23w
Doodia linearis	R					15w			29w-(shd)
Cyatheaceae									
Cyathea australis	R					49w			c.1y
Davalliaceae									
Davallia solida var. pyxidata	K/r	K/r							
*Nephrolepis cordifolia	R/k	R							
Dennstaedtiaceae									
Histiopteris incisa	R	R							

Family/Spacing	Fire Re	sponse	Foodlings	First flowering First fruiting			ting	g Juvenile periods		
(Post–fire fl, fr peaks)	LCR	NL	first observed R	Resn	Seed	Resp	Seed	Primary	Secondary	
	LUK		1	сэр	beeu	ксэр	beeu	I I IIIIuI y	Secondary	
Hypolenis muelleri	R					44w_orn				
Pteridium esculentum	R	R				10w			10w-(shd)	
Dicksoniaceae						1011			1011 (5110)	
Calochlaena dubia	R	R				50w			c.1v	
Gleicheniaceae									5	
Gleichenia dicarpa	R/k									
Gleichenia microphylla	R									
Gleichenia rupestris	R	pR								
Sticherus flabellatus	K/r	K/R				35w-grn				
Grammitaceae										
Grammitis ?stenophylla		Κ								
Hymenophyllaceae										
Hymenophyllum cupressiforme		Κ								
Lindsaeaceae										
Lindsaea linearis	R					50w			c.1y	
Lindsaea microphylla	R	R				21w			21–50w	
Lycopodiaceae										
Lycopodiella lateralis		pК								
Osmundaceae										
Todea barbara	R	R				10w			10w	
Polypodiaceae										
Platycerium bifurcatum	Κ									
Pyrrosia rupestris	Κ	Κ								
Psilotaceae										
Psilotum nudum	K/r	K/r				50w-grn				
Pteridaceae										
Pteris tremula	pR									
*Pteris vittata	R					23w				
Schizaeaceae										
Schizaea bifida (s.lat.)	R	R				63w				
Schizaea rupestris	pR	R				38w-grn				
Selaginellaceae										
Selaginella uliginosa		R								
Sinopteridaceae										
Cheilanthes distans		?K				<u>1</u>	<u>40w</u>			
Cheilanthes sieberi	R					23w			23w	
Pellaea falcata	R									
Thelypteridaceae										
Christella dentata	R					23w			23w	
GYMNOSPERMS —										
Cupressaceae										
Callitris muelleri		Κ	32w							
Pinaceae										
*Pinus radiata		K								
Podocarpaceae										
Podocarpus spinulosus	R	R	0	92w		100w			c.2y	
Zamiaceae	_	_								
Macrozamia communis	R	R								
DICOTYLEDONS —										
Acanthaceae										
Brunoniella pumilio	R			6w		11w			$26w_{\rm shd}$	
(poss.pk.pf.flower.c.1y)	IX.		,	0.11		1114			2011 (3110)	
Pseuderanthemum variabile	R	R	-	7w		10w			20w-(shd)	
*Thunbergia alata	pR		-	26w						

Family/Species	Fire Response		Seedlings	First fl	First flowering		ruiting	Juvenile periods	
(Post–fire fl, fr peaks)	LCR	NL	first observ	ed Resp	Seed	Resp	Seed	Primary	Secondary
Acoração									
*Acer negundo	R								
Aizoacoao	ĸ								
Tetragonia tetragonioides	?K		7w		39w		39w-or	n	
Amaranthaceae					0,00		69 m 81		
Alternanthera denticulata	R			10w					
*Amaranthus hybridus	?K				12w		19w		
*Amaranthus viridus	?K		9w						
Amygdalaceae									
*Prunus cerasus	R								
*Prunus persica	R	R							
Anacardiaceae									
*Toxicodendron succedaneum	R								
Apiaceae									
Actinotus helianthi	V	V	15		41		56	56m (ahd)	
(prob.pk.pf.flower.c.2-3y)	ĸ	ĸ	13W		41W		30W	Sow-(siid)	
Actinotus minor	Κ	Κ	24w		42w				
Centella asiatica	R					10w			
*Ciclospermum leptophyllum					<u>28w</u>	4	<u>I3w-grn</u>		
*Eryngium pandanifolium	R			50w-buc	ls				
*Foeniculum vulgare	R	R	9w(1)	50w-buc	ls	63w			63w-(shd)
*Hydrocotyle bonariensis	R	pR		11w		20w			
Hydrocotyle peduncularis	R		15w	10w		16w			
Platysace lanceolata	D	D	1.5			(2)			(2)
(prob.pk.pf.flower.c.3-5y)	K	K	15w	56W		63W			63W
Platysace linearifolia	R/k	R	24w	63w		64w_im	ım		
(prob.pk.pf.flower.c.2–3y)	IX/K	K	2400	0.5 W		04₩-111			
Platysace stephensonii		R	17w						
Trachymene incisa		R		35w		35w			35+w-(shd)
Xanthosia pilosa	K/r	Κ	22w		85w				
(prob.pk.pi.n.nower.c.4y)	V		20.00						
	К		20W						
*Newing along day	р	р		150					
"Nerium Oleanaer	ĸ	K V/D		130W					
*Vinag major	D	K/K		26.00					
	ĸ			30W					
Aranaceae		V	12						
Astrotricha latifolia	V	К	13w		146.00				
Astrotricha longifolia	К		44W		140w				
(prob.pk.pf.flower.c.3v)	K/r		43w		<u>92w</u>	<u>10</u>)1w–imm	c.2–3y	
*Hedera helix	R								
Polyscias sambucifolia	R		38w	51w.101	W	114w-r	i		c.2–3v
Asclepiadaceae									
*Araujia sericifera	R	R	10w			6	1w-(grn)		
*Gomphocarpus ?fruticosus				38	w(buds)		(B)		
Marsdenia suaveolens	R	R		10w		32w			32+w
Tylophora barbata	R			43w					
Asteraceae									
*Ageratina adenophora	R	R	42w	38w		44w			44w–(shd)
*Ageratina riparia	R		63w	34w		38w			40w-(shd)
*Ageratum houstonianum		?K			38w				(5114)
*Ambrosia artemesiifolia		?R		1	3w(1)				
*Arctotheca calendula				1	38w				
*Aster subulatus					61w	6	3w–(shd)		
*Bidens pilosa	рK	pК	7w		13w	<u>.</u>	19w	19w-(shd)	
1	1	1						()	

Family/Species	Fire Response		Seedlings	First	flowering	First fruiting		Juvenile periods	
(Post–fire fl, fr peaks)	LCR	NL	first observed	l Resp	Seed	Resp	Seed	Primary	Secondary
						1		J	J
*Bidens subalternans	pК		12w		12w		16w–gri	1.	
*Bidens tripartita	pК				15w		15w		
Brachyscome angustifolia	ъD			11		16w (ch	Ð		16w (abd)
var. angustifolia	рк			11 W		10w-(site	1)		Tow-(slid)
Cassinia aculeata	K						136w	c.3y(shd)	
Cassinia denticulata	K								
Cassinia longifolia				2	202w(buds)				
*Chrysanthemoides monilifera	Κ		19w		88w		101w	c.2y(shd)	
subsp. <i>monilifera</i>	9D				26 8- 20.00	16 5	(ahd)	• • •	
*Convra hongrignsis	/K				<u>20 & 36w</u> 28w	40,5	50m	61w (abd)	
*Coreopsis lanceolata	рк				30W		JOW	01w-(slid)	
(prob.pk.pf.flower.c.2–3v)		R	10w		<u>42w</u>				
Cotula australis	pК						15w		
*Crassocephalum crepidioides	рK		15w		15w		15w	39w	
*Delairea odorata	рK				<u>125w</u>				
*Dimorphotheca pluvialis					<u>36w</u>				
*Dittrichia graveolens					<u>63w</u>				
*Erechtites valerianifolia	pК				28w		30w	39w	
*Erigeron karvinskianus	R			10w		27w			27w-(shd)
Euchiton sphaericus					<u>43w</u>		<u>43w</u>		
*Facelis retusa						<u>43v</u>	<u>v–(shd)</u>		
*Galinsoga parviflora	pК		7w		12w		15w	15w	
*Gamochaeta americana	K/R					10w			10w-(shd)
*Gamochaeta pensylvanica	pК		15w		15w		15w	15w	
*Gamochaeta spicata	рК						27w	27w-(shd)	
*Helianthus annuus					12w				
Helichrysum elatum	9K	nK			87w		97w	$c^{2}v(shd)$	
(prob.pk.pf.flower.c.3y)	.1	pix			07.		<i>J T</i> W	e.2y(shd)	
Helichrysum rutidolepis	R			18w		18w			
Helichrysum scorpioides	R			16w		23w			43w–(shd)
*Hypochaeris radicata	R			10w		10w			10w
*Lactuca serriola	?K				50w		50w		
Lagenifera gracilis	R			$9_{\rm W}$		12w			12w–(shd)
Oleania microphylla	K/r				85w		94w	c.2-3y(shd)	
(prob.pk.pr.nower.c.4–5y)		K/r	35.00						
Ozothamnus diosmifolius		IX /1	55 W						
(prob.pk.pf.flower.c.3–4y)	K/r		36w		100w		104w	c.2y(shd)	
Pseudognaphalium luteoalbum					41w		43w	43w-(shd)	
*Roldana petasitis	R	R				38w			
Senecio hispidulus	nK				28		44.55	Adva (abd)	
var. hispidulus	рк				30W		44 W	44w–(siid)	
*Senecio madagascariensis	pК				15w		20w	26w-(shd)	
Senecio minimus					43w-buc	ls			
*Senecio pterophorus					<u>154w</u>				
Sigesbeckia orientalis	рК		11w		11w		16w	16w–ri.	
*Solidago canadensis	R			16w		33w			33w-(shd)
*Soliva sessilis						<u>43</u>	w(grn)		
*Sonchus oleraceus	pК		8w		15w		15w	15w	
*Tagetes minuta	_	pК			20w		20w	20w	
*Taraxacum officianale	R			11w		25w			25w-(shd)
*Xanthium occidentale	Κ								
Avicenniaceae									
Avicennia marina	R/K								
var. australasica Balsaminacoao									
*Impations walleriana	nK		1850		18				
impunens waneriana	hiz		10 W		10W				

Family/Species	Fire Response		Seedlings	First f	lowering	First fru	iiting	Juvenile periods	
(Post–fire fl, fr peaks)	LCR	NL	first observ	ved Resp	Seed	Resp	Seed	Primary	Secondary
Basellaceae	P	5	10 (1)	N			20 00		
*Anredera cordifolia	pR	R	19w(1)	Note: ae	rial tubers for	rming withi	n 39w of f	ire.	
Baueraceae		D							
Bauera ?microphylla	**	R			0.0		100		
Bauera rubioides	K	K/r	23w		90w		198w	c.4y	
Bignoniaceae	D					50			
Pandorea pandorana	K			26w		50w			c.1y–(shd)
Boraginaceae					20	20			
*Echium plantagineum					<u>38w</u>	381	<u>v(grn)</u>		
Brassicaceae	17		10		10		20	2 0 (11)	
*Brassica fruticulosa	рК		12w		12w		28w	28w–(shd)	
*Brassica juncea	рК	017			43w				
*Brassica tournefortu		?K			42w		•	20	
*Capsella bursa–pastoris		рК	20w		20w		20w	20w–grn	
*Cardamine flexuosa	pK		15w				15w	15w–(shd)	
*Cardamine hirsuta	pК				24w		24w	24w	
*Coronopus didymus	pK		15w				15w	15w	
*Lobularia maratima	pК				23w				
Rorippa gigantea					38w		38w–im	m	
*Rorippa nasturtium–aquaticum	?K						43w–im	m	
Buddlejaceae									
*Buddleja davidii	R	R		51w					
*Buddleja madagascariensis		R		38w					
Campanulaceae									
Wahlenbergia communis (s.lat.)					<u>38w</u>	<u>43v</u>	<u>v–grn.</u>		
Wahlenbergia gracilis	?K		24w		<u>15w</u>	<u>23w</u>	<u>/–(shd)</u>		
Caprifoliaceae									
*Lonicera japonica	R	R							
Caryophyllaceae									
*Cerastium glomeratum	pК		23w		23w		23w	23w-(shd)	
*Petrorhagia velutina		pК			38w		38w	44w-(shd)	
*Polycarpon tetraphyllum	pК				43w		44w	44w	
*Silene gallica var. gallica	pК				36w		38w	38w–grn	
*Stellaria media	pК						15w	15w-(shd)	
Casuarinaceae									
Allocasuarina distyla		Κ	17w		86w		167w		
Allocasuarina littoralis	K/r		10w	124w			179w		
Allocasuarina torulosa	R	R							
Casuarina glauca	R	R							
Celastraceae									
Maytenus silvestris	R	R				124w-ri			c.2–3y
Chenopodiaceae									
*Atriplex ?prostrata	pК		10w						
*Chenopodium album	pК	pК					20w		
Chloanthaceae									
Chloanthes stoechadis		pК	10w		42w-(1)				
Clusiaceae									
Hypericum gramineum	R			11w		38w			38w-(shd)
*Hypericum perforatum	R			43w		50w			63w-(shd)
Convolvulaceae									
Calystegia marginata	pК		9w		41w		46w	46w-grn	
Convolvulus erubescens						<u>51w</u>	<u>/–(shd)</u>		
Dichondra repens (s.lat.)			9w			18	Sw(1)		
*Ipomoea cairica		R							
*Ipomoea indica	R	R		15w					

Family/Species	Fire Re	esponse	Seedlings	First flow	vering	First frui	ting	Juvenile per	iods
(Post–fire fl, fr peaks)	LCR	NL	first observed	d Resp	Seed	Resp	Seed	Primary	Secondary
	LCK			nesp	beeu	ксэр	beeu	i i iiiiui y	Secondary
Polymeria calycina	pR	R		38w		56w			
Crassulaceae									
*Crassula multicava		pR		38w					
Crassula sieberiana	pК	pК	13w		26w		26w		
Cunoniaceae									
Callicoma serratifolia	R		15w	91w		108w			$c^{2v}(shd)$
(poss.pk.pf.flower.c.3+y)	K		15.00	<i>J</i> 1W		100₩			c.2y(shd)
Ceratopetalum apetalum	R								
Ceratopetalum gummiferum	R	R	101w	50w					c.2–3y
Schizomeria ovata	R	R							
Dilleniaceae									
Hibbertia aspera	R			50w					
Hibbertia bracteata	R	R		38w, 87w					
Hibbertia cistiflora		pК							
Hibbertia dentata	P		30.00	38.00					
(prob.pk.pf.flower.c.4–5y)	K		39W						
Hibbertia diffusa	R			23w-buds					
Hibbertia fasciculata	πV		51		56 07				
(prob.pk.pf.flower.c.3-5y)	рк		31W		30w, 8/w				
Hibbertia linearis	К	К	26w		72w 86w				
(prob.pk.pf.flower.c.4–6y)	IX.	IX.	200		12,000				
Hibbertia nitida	K		135w-adv						
Hibbertia riparia (s.lat.)	R			89w		108w			
Hibbertia scandens	R	R							
Hibbertia serpyllifolia		R							
Droseraceae	_	_							
Drosera auriculata	pR	pR		26w		26w			26w-(shd)
Drosera poltata	K nD	K nD		17w		20			22w (abd)
Drosera spatulata	pR pR	pR pR		17w 41w		52W 63W			52w (slid)
Flaeocarnaceae	pix	pix		71 W		0.5 W			03w-(sild)
Flaeocarnus reticulatus	R	R		201w		c 5v-grn			c 5y_a few fruit
Fricação	K	ĸ		201 W		<u>c.sy-gin</u>			c.sy-a lew fruit
Stypholioidoao									
Acrotricha divaricata		V							
Brachyloma daphnoides		K							
(prob pk pf flower c 3-5v)	R	R		40w, 86w					
Dracophyllum secundum	К	К	67w				c.3v	c.3–4v	
Epacris crassifolia	K	K	20w				5		
Epacris longiflora	К	К	88w-adv		124w				
Epacris microphylla	17	17	(1		0.6				
(prob.pk.pf.flower.c.4–6y)	K	K	61W		86W				
Epacris obtusifolia		Κ	38w(1)						
Epacris pulchella	Κ	Κ			120w		122w	c.2-3y(shd)	
Epacris purpurascens	V				a 2 Av				
var. purpurascens	К				C.3–4y				
Leucopogon amplexicaulis	pК	K	63w		87w–(1)		142w	c.3–4y	
Leucopogon appressus	К	К	75w_adv		108w				
(poss.pk.pf.flower.c.5+y)	к	IX.	75W-auv		100 W				
Leucopogon ericoides	К				135w		143w	c.3v	
(prob.pk.pf.flower.c.4–6y)		1Z			//		100	,	
Leucopogon esquamatus	рК	К			a <i>i</i>		196w	c.4y	
Leucopogon juniperinus	K				c.3–4y				• •
Leucopogon lanceolatus	R	R		88w		90w-grn			c.2–3y
Leucopogon microphyllus	Κ	Κ			75w				
(prov.pk.pr.nower.c.4–0y) Leuconogon setiger	К	К			c 4v				
Lencopogon senger	17	17			y				

Family/Species	Fire Response		First flowering Seedlings		First fruiting		Juvenile periods		
(Post–fire fl, fr peaks)	LCR	NL	first observe	ed Resp	Seed	Resp	Seed	Primary	Secondary
	LOR			nesp	Seed	nesp	Secu	1 1 111111 J	Secondary
Time and a state second									
Lissanthe strigosa		R		37w-(1)					
Malichrus procumbans				0	$A_{y}(1)$				
Monotoca alliptica	K/r			<u>u</u>	5 - 4y(1)				
	N/I D	р		(7					
Monotoca scoparia	K	K		0/W					
Sprengelia incarnata		К			106		105		
Styphelia longifolia	K		126w–(1)–adv		186w		195w	c.4y	
Styphelia triflora	K		61w				149w	c.3y	
Styphelia tubiflora	K	K	64w		124w		242w	c.4–5y	
Woollsig pungens	K V	K V	72w ody		1 2 0m/				
	K	K	/2w-auv		120w				
Eupnorbiaceae	D	D		16		20			50
Amperea xiphoclada	K	K	10	16W		38W			50w-grn
Bertya brownii		K	13w						
Breynia oblongifolia	R	R		46w		63w			63w
(poss.pk.pl.llower.c.3–4y)	-V						0		
*Chamaesyce supina	рк						9W		
*Eupnorbia aepauperata	pК				43w				
Val. pubescens	nV		7				0	0	
Clashi dian fandia an di	рк	р	/ w			7(9W	9W	- 2 2
Giochiaton ferainanai	K	K				/0W			c.2–3y
(prob pk pf fruit c 5, 6y)	Κ	Κ	30w		85w		86w	c.2–3y	
(proteris linifolia		nK							
American and a second second	D	pr	6						
Dhall and has histellar	л D	р	0w	22		20			12
Phylianthus nirtellus	K	K	20W	23W	10	38W			43w–grn.
*Phyllanthus tenellus	рК				18w				
Poranthera corymbosa	pK				94w				
Poranthera ericifolia	pК	K	38w		38w		43w	50w	
Poranthera microphylla	pК	pК	15w		18w		18w	18–39w	
Ricinocarpos pinifolius	R	R	133w-adv	86w		94w			c.2y
*Ricinus communis	pК	pК	8w		25w		25w	25–38w	
Eupomatiaceae									
Eupomatia laurina		R							
Fabaceae									
Caesalpinioideae									
*Senna pendula	R	R	7w	61w		85w			c.2y
Faboideae									5
Bossiaea heterophylla	рK	?r	10w		67w		97w	c.2v(shd)	
Bossiaea obcordata	r			26		100			a (11)
(poss.pk.pf.fruit.c.4–5y)	R			36w		100w			c.2y–(shd)
Bossiaea scolopendria	R	Κ	?63w?	86w		104w			c.2y-(shd)
Daviesia alata		?K							• • •
Daviesia ulicifolia	?K	?K	37w		37w		c.4v		
Desmodium ?gunnii	R			11w			5		
Desmodium rhytidophyllum		R		13w		13w			
Dillwynia floribunda		R		15 0		15.0			
var. floribunda	pК	K	63w		90w				
Dillwynia retorta									
(prob.pk.pf.flower.c.5v)	K	K	10w		85w		150w	c.3y(shd)	
Dillwynia rudis	К	рK					90w	c.2v	
*Dipogon lignosus	R	r.,	10w	38w		50w	2011		c.1v-(shd)
*Frythring crista_galli	R	R	10.0	13w		5011			city (sita)
*Frythring v sykasij	P	R		3811					
*Canista monspectulana	K	IX.	11	30W	86.		104.	21	
Choing clandosting	л. р	"D	11W	25	00W		104W	∠y	
Chusing tabaging	К D	рк 	0	33W		20			20
Grycine iadacina	к	рк	ow	IUW		JUW			SUW-(snd)

Family/Spacios	Fire Response		First flo Seedlings		lowering First f		ruiting	Juvenile periods	
(Post–fire fl, fr peaks)	LCR	NL	first observe	ed Resp	Seed	Resp	Seed	Primary	Secondary
	17		22				00	2	
Gompholobium glabratum	рК	01	23w	00		105	89w	c.2y	0.0 (1.1)
Gompholobium grandiflorum	K	?K		90w		125w			c.2-3y(shd)
(prob.pk.pf.fruit.c.4–5y)	Κ	R	37w		140w		154w	c.3y(shd)	
Hardenbergia violacea	R	pR	7w	31w		40w			c.1y
(prod.pk.pl.nower.c.3–5y) Hoved linearis (s lat)	R	R		31w		100w			c 2v
Hovea longifolia	K	K	30w	51 W	190w	100 **	198w	c.4v	0.2y
Kennedia rubicunda	?K/r	?K/r	6w		35w		46w	c.1v	
*Lotus angustissimus	pК	pК	27w		37w		43w	43w	
*Medicago arabica	pК				38w		38w		
*Medicago polymorpha	pК				33w		38w		
*Melilotus indicus	pК	pК			26w		38w		
Mirbelia rubiifolia Mirbelia speciosa	рК	K	17w		141w 189w		3–4y	c.3–4y(shd)	
subsp. speciosa Phyllota grandiflora	рD	D		37.0					
Phyllota phylicoides	рк	K		37W					
(prob.pk.pf.flower.c.4–5y) <i>Platylobium formosum</i>	R/k	R	63w	86w					
(prob.pk.pf.flower.c.3-5v)	R	R	36w	<u>36w,87v</u>	V	101w			c.2y-(shd)
Podolobium ilicifolium		K/R	35w	38w					
*Psoralea pinnata (prob.pk.pf.flower.c.4y)	pК		12w		92w		122w	c.2-3y(shd)	
Pultenaea daphnoides (prob.pk.pf.flower.c.3–5y)	Κ	К	20w		86w		150w	c.3y(shd)	
Pultenaea flexilis (poss.pk.pf.flower.c.5+y)	Κ	Κ	10w		88w				
Pultenaea mollis (prob.pk.pf.flower.c.3–5y)	?K		97w-adv		140w		154w	c.3y(shd)	
Pultenaea polifolia	. V	K			96		00	- 2	
Pultenaea retusa	рК				86W		90W	c.2y	
(prob.pk.pf.flower.c.3–5y)	Κ	К	21w		90w		104w	c.2-3y(shd)	
Pultenaea tuberculata (prob.pk.pf.flower.c.5–6y)	Κ	K	24w		61w c.2y				
Pultenaea villosa	Κ		26w						
Sphaerolobium minus					<u>90w</u>		10		
*Irifolium campestre *Trifolium carnuum	pK pK				41W 16w		43W		
*Trifolium dubium	pK pK				10w 43w		43w		
*Trifolium glomeratum	pK				36w		15 0		
*Trifolium repens	pK				36w				
*Vicia hirsuta	pK						<u>38w</u>		
*Vicia sativa	pK	?K	11		37w		37w		
Vicia leirasperma Viminaria juncea	рк		11W		33W		30W		
(poss.pk.pf.flower.c.2–5y)	K	pК	17w		91w		100w	c.2y(shd)	
*Wisteria ?sinensis	R								
Mimosoideae	17				105		100	2.4	
*Acacia baileyana	рК V		44w-adv		135w		198w	c.3–4y	
Acacia echinula	ĸ		124w-(adv)	1	142W		198W	c.5–4y	
(*?)Acacia elata	?K			-	<u>100</u>				
Acacia falcata	pК		51w-adv				90w-grn	c.2–3y	
Acacia floribunda	R/k	k		135w			-		
Acacia hispidula	pК	р			61w		124w	c.3y	
Acacia implexa Acacia irrorata subsp. irrorata		К			153w				
Acacia linifolia (prob.pk.pf.fruit.c.4–6y)	Κ	Κ	9w		56w		97w	c.2-3y(shd)	

Family/Species	Fire Response		First flowering Seedlings		First fruiting		Juvenile periods		
(Post-fire fl, fr peaks)	LCR	NL	first obser	ved Resp	Seed	Resp	Seed	Primary	Secondary
subsp. <i>longifolia</i>	Κ	К	10w		85w		149w	c.3y(shd)	
Acacia longissima	К		88w-adv		153w		169w		
Acacia myrtifolia	V	K	25.00		131w		140.00	a 3u(shd)	
(prob.pk.pf.fruit.c.4y)	K	IX D.#	250		1310		149 W	c.5y(sild)	
Acacia oxycedrus	K nV/r	R/k	17w		136w				
Acacia parvipinnula	рк/1 ?К				135w				
*Acacia podalyriifolia	рК	Κ	36w		124w		154w	c.3y(shd)	
*Acacia saligna		R	21w		<u>140w</u>	14	5w(grn)		
Acacia schinoides	Κ		51w		154w		235w	c.5y	
Acacia suaveolens	Κ	Κ	15w		71w		97w	c.2y(shd)	
(prob.pk.pf.flower.c.2–4y) Acacia terminalis									
(prob.pk.pf.flower.c.3–4y)	K	K	12w		91w		149w	c.3y(shd)	
Acacia ulicifolia	К	К	10w		67w		101w	c.2-3v(shd)	
(prob.pk.pf.flower.c.3–5y)			10.0		07.0		101.0	0.2 0) (0.00)	
*Paraserianthes lophantha					87w		163w	c.3y(shd)	
Subsp. <i>iophanina</i>									
*Fumaria capreolata									
subsp. <i>capreolata</i>	рК		12w		12w		12w		
*Fumaria ?officianalis			15w		15w		15w		
Gentianaceae									
*Centaurium tenuiflorum	?K				43w				
Geraniaceae	_								
Geranium homeanum	R		10w	19w		19w			
(prob pk pf flower c 1v)			20w		<u>35w</u>	<u>44</u>	w–(shd)		
(prod.pk.pr.nower.e.ry)									
Dampiera purpurea	P		22	24		10			
(prob.pk.pf.flower.c.2–3y)	R		33W	36W		49w			c.1y–(shd)
Dampiera stricta	R	R	21w	31w		64w			
(prob.pk.pf.flower.c.2–3y)	D	D	26.00	31.00		51.00			a 1 y (abd)
Goodenia bediagona Goodenia hederacea	R	К	20w	30w		29w			c.1y-(shu)
Goodenia heterophylla	K			57W		72.00			C.1 y
(prob.pk.pf.flower.c.2–3y)	R	R		20w		46w			46w-(shd)
Goodenia ovata	Κ	Κ	20w		143w		146w	c.2–3y	
Goodenia paniculata		pR			<u>10–20w</u>				
Goodenia stelligera					<u>31w(1)</u>				
Scaevola ramosissima	R	R		16w		51w			c.1y
Velleia lyrata					<u>36w</u>	<u>51</u>	<u>w–(shd</u>)		
Haloragaceae									
subsp. micranthus	pK	рК	12w		43w				
Gonocarpus salsoloides		pК	17w						
Gonocarpus teucrioides	K/r	K	10.52		04m		100.00	o 2v	
(prob.pk.pf.flower.c.2-3y)	N /1	ĸ	10w		94W		100w	C.2y	
Hamamelidaceae									
*Liquidambar styraciflua	R								
Lamiaceae	17	17	51		100		10.4	2	
Hemigenia purpurea	pK pK	K pV	51W 15w		100w 40w		104w 40w	c.2y	
Prostanthera denticulata	рк	рк. К	1.J.W		49W		49W		
Prostanthera linearis	К	K/r			150w				
*Prunella vulgaris	?K		19w		51w		51w	c.1y-(shd)	
-									

Family/Species	Fire Res	ponse	Seedlings	First f	lowering	First fru	iting	Juvenile per	iods
(Post–fire fl, fr peaks)	LCR	NL	first observe	ed Resp	Seed	Resp	Seed	Primary	Secondary
*Stachys arvensis	pК				16w		23w	23w-(shd)	
Lauraceae									
Cassytha glabella (prob.pk.pf.flower.c.3–6y)	K		33w		61w		91w	c.2–3y(ripe)	
<i>Cassytha pubescens</i> (poss.pk.pf.fruit.c.5y)	K				150w		191w	c.3–4y	
*Cinnamomum camphora	R	R		94w					
Endiandra sieberi	R	R		211					
Lentibulariaceae		R							
Utricularia dichotoma		?R			32w				
Utricularia lateriflora		?R			32w				
Linaceae					<u></u>				
*Linum trigynum	?K	?K			38w		38w		
*Reinwardtia indica	pR			23w	0011		2011		
Lobeliaceae	P			2011					
Lobelia alata									
(prob.pk.pf.flower.c.3v)	?R		20w		<u>49w</u>	<u>6</u>	<u>3w</u>		
Lobelia dentata									
(prob.pk.pf.flower.c.1v)					<u>19w</u>	<u>49w</u>	<u>–(shd)</u>		
Lobelia gracilis					40.00	6	7		
	D	D		6	<u>49w</u>	<u>U</u>	<u>/w</u>		15
Pratia purpurascens	K	рК		6W		15W			15w–grn
Loganiaceae									
Logania albiflora (poss.pk.pf.flower.c.4–6y)	R	R	63w	87w		163w	c.4y(1)		c.3y(shd)
Mitrasacme polymorpha	nK	К			37w		43w	c 1v	
(prob.pk.pf.flower.c.3y)	pre				5711		15 0	0.19	
Loranthaceae									
Amyema congener subsp. congener	Κ	The hos	st of this mistleto	be was als	so killed by th	e same fire.			
Muellerina eucalyptoides	R(1)m.i.f	One pla	int resprouted af	ter low to	medium inter	nsity fire. Th	ne canopy o	of its host was no	ot 100% scorched.
Malaceae									
*Cotoneaster ?franchetti	R	R							
*Cotoneaster glaucophyllus	R					122w			c.2-3y(ripe)
*Eriobotrya japonica		k							
*Pyracantha angustifolia	R					122w			c.2-3y(ripe)
*Pyracantha crenulata	R					125w			c.2-3y(ripe)
*Pyracantha fortuneana	R								
Malvaceae									
Hibiscus diversifolius		?K	?13w						
*Malva parviflora	?K				11w		11w		
*Modiola caroliniana	?K		7w		38w		50w	c.1y-(shd)	
*Pavonia hastata (poss.pk.pf.fruit.c.2+y)	рK		9w				44w(1)		
* <i>Sida rhombifolia</i> (poss.pk.pf.flower.c.3y)	pK		6w		15w		28w	28w-(shd)	
Meliaceae									
*Melia azedarach	R								
Synoum glandulosum	R	R							
Menispermaceae									
Sarcopetalum harveyanum	R	R							
Stephania japonica var. discolor	R	R	9w(1)	50w					
Menyanthaceae									
Villarsia exaltata		pR		20w		20w			20w-(shd)
Monimiaceae									
Wilkiea huegeliana		?K							

Family/Species	Fire Re	sponse	Seedlings	First flo	wering	First fru	iting	Juvenile per	iods
(Post–fire fl, fr peaks)	LCR	NL	first observe	d Resp	Seed	Resp	Seed	Primary	Secondary
				-		-		·	·
Moraceae									
Ficus coronata	R								
*Ficus pumila	?K								
Ficus rubioinosa	R	R				140w			
*Morus alba	R	R				44w			c 1–2v
Myrsinaceae	K	R							C.1 2y
Aegiceras corniculatum	R/k								
Rananea variabilis	1011								
(syn. Myrsine variabilis)	R	R	39w	122w-bud	S				
Mvrtaceae									
Acmena smithii	R	R							
Angophora bakeri	_								
(poss.pk.pf.fruit.c.1–2y)	R		67w	50w		61w			61–67w(shd)
Angophora costata	R		35w						
Angophora hispida									
(prob.pk.pf.flower.c.1–2y)	R	R	104w	32w, 49w		61w			61w(shd)
Austromyrtus tenuifolia									
(poss.pk.pf.flower.c.3+y)	R	R		150w		163w–ri.			c.3y
Babingtonia densifolia	Κ	Κ	61w-adv		2y, 3y		164w	c.3-4y(shd)	
Babingtonia pluriflora	R				5.0	124w			
Backhousia myrtifolia	R								
Baeckea brevifolia		R							
Baeckea diosmifolia	R	R		46w		56w			56w
Baeckea imbricata	Κ	Κ					184w	c.3–4y	
Baeckea linifolia	R	R		161w		190w			c.3–4y
Callistemon citrinus	R	R		97w					-
Callistemon linearis	R	R		92w		144w			c.3y
Calytrix tetragona	V	V	671		120			- 92 49	
(poss.pk.pf.flower.c.4+y)	ĸ	K ;r–m.	1.1 / I W		139W			c.?5–4y?	
Corymbia gummifera	R					163w			c.3+y
Darwinia hiflora									
(poss.pk.pf.flower.c.5+y)	K		36w		91w				
Darwinia fascicularis									
var. fascicularis	Κ	Κ	31w		139, 186w				
(poss.pk.pf.flower.c.5+y)									
Darwinia procera		Κ							
Eucalyptus botryoides		R							
Eucalyptus haemastoma	R		75w	139w		177w			c.3–4y
Eucalyptus luehmanniana		R							
Eucalyptus obstans		R							
Eucalyptus paniculata	R		?85w-adv						
Eucalyptus pilularis	R		?49w						c.4–5y
Eucalyptus piperita	R		?49w						c.3–5y
Eucalyptus punctata		R							
Eucalyptus racemosa	R								
Eucalyptus resinifera	R			190w-bud	S				
Eucalyptus saligna	R								
Eucalyptus umbra		R							
Euryomyrtus ramosissima	pК				139w			_	
Kunzea ambigua	K	K	24w		97w		100w	c.2–4y	
Kunzea capitata	R	K/r	31w	91w					
Leptospermum arachnoides	R	R		97w		124w			c.2–3v
(prob.pk.pt.flower.c.2–3y)	D								5
Leptospermum grandifolium	K	ĸ							
Leptospermum juniperinum		R							

Family/Species	Fire Re	esponse	Soodlings	First	flowering	First fru	iting	Juvenile pe	eriods
(Post–fire fl, fr peaks)	LCR	NL	first obse	rved Resp	Seed	Resp	Seed	Primary	Secondary
Leptospermum parvifolium	R			90w		108w			c.3–4y(shd)
<i>Leptospermum polygalifolium</i> (prob.pk.pf.flower.c.4y)	R			94w		143w			c.3y
Leptospermum squarrosum	Κ	Κ	22w		169w		184w	c.3–5y	
<i>Leptospermum trinervium</i> (poss.pk.pf.flower.c.4y)	R	R	?126w	17w,31	+W	37w-grn.			c.2y(shd)
Melaleuca deanei	R			90w-m	.i.f.				
Melaleuca hypericifolia	k/r								
Melaleuca linariifolia (prob.pk.pf.flower.c.4y)	R	R	6w	94w					
Melaleuca nodosa	R			91w		100w			c.2+y
Melaleuca styphelioides		R							
Micromyrtus ciliata (prob.pk.pf.flower.c.4y)	pК	К	32w		88w				
Syncarpia glomulifera	R	R							c.5y
Tristania neriifolia		R							
Tristaniopsis collina	R	R		154w					
Tristaniopsis laurina	R	R				124w			c.2–3y(shd)
Ochnaceae	_	_							
*Ochna serrulata Olacaceae	R	R				93w–grn			
Olax stricta (poss.pk.pf.flower.c.4–5y)	?R				<u>120w</u>	1	<u>98w</u>		
Oleaceae									
*Jasminum polyanthum	?R				<u>87w</u>				
*Ligustrum lucidum	R		44w	156w					
* <i>Ligustrum sinense</i> (poss.pk.pf.flower.c.5+y)	R	R	39w	92w		122w			c.2–3y
Notelaea longifolia	R	R				101w			c.2y(ripe)
Onagraceae									
Epilobium billardierianum var. cinereum	R			11w		11w-(shd)		
*Epilobium ?ciliatum					<u>38w</u>	<u>38w</u>	(green)		
*Ludwigia peruviana		R				20w-grn			
*Oenothera mollissima						<u>39w</u>	(green)		
Oxalidaceae	_						_		
Oxalis "corniculata" (s.lat.)	pR				<u>10w</u>	<u>1</u>	<u>.2w</u>		
*Oxalis debilis var. corymbosa	pR				<u>19w</u>				
*Oxalis incarnata	рК				<u>12W</u>				
*Oxalis talijolla *Oxalis pag. caprae	рк pP				<u>ow</u> 26m				
Possifloração	рк				<u>20w</u>				
*Passiflora edulis						150	w(orn)		
Passiflora herbertiana						<u>150</u>	<u>(2111)</u>		
(prob.pk.pf.flower.c.4y)	pR				<u>122w</u>	<u>122</u>	w(grn)		
Phytologogogo						<u>202</u>	w(giii)		
*Phytolacca octandra			7		15		20.	20.000 mi	
Pittosporaceae			7 W		1.J.W		29W	29w-11	
Rillardiera scandens									
(poss.pk.pf.flower.c.4–5y)	R	R		38w		101w			c.2y
(poss.pk.pf.flower.c.5y)	R	R		51w		71w-(shd)		c.1-2y(shd)
Pittosporum revolutum (prob.pk.pf.flower.c.5 y)	R	R		36w,88	W	41w-grn			

Family/Species	Fire Re	esponse	Seedlings	First f	lowering	First f	fruiting	Juvenile per	iods
(Post–fire fl, fr peaks)	LCR	NL	first observ	ed Resp	Seed	Resp	Seed	Primary	Secondary
Pittosporum undulatum	k/r				242w		262w	At least 5 year	s
<i>Rhytidosporum procumbens</i> (prob.pk.pf.fruit.c.3–4y)	?K	? r			<u>43w</u>		<u>43w</u>		
Plantaginaceae									
*Plantago lanceolata *Plantago major Polygalaceae	R	pR		10w	<u>50w</u>	10w	0w(grn)		50w-(shd)
Comesperma ericinum	чV				9 7		101	a)	
(prob.pk.pf.flower.c.3-5y)	рк				0/W		101W	C.2y	
Comesperma sphaerocarpum	pR			16w		16w(gr	n)		Less than 1 year
<i>Comesperma volubile</i> (prob.pk.pf.flower.c.3–5y)	?K				<u>89w</u>				
*Polygala myrtifolia					142w		1.10	•	
*Polygala virgata	K				142w		142w	c.2–3y	
Polygonaceae	D					30.00			30w (shd)
*Acetosal sagiilala *Acetosalla vulgaris	ĸ				30m	50W	Ow(orn)		50w–(snd)
*Fallonia convolvulus					<u>39W</u>	2	17w		
*Persicaria capitata	R			19w/			<u>17w</u>		
Persicaria deciniens	K			17 **	20w				
Persicaria lapathifolia					20w		20w		
Persicaria strigosa					<u>20w</u>		2011		
Rumex brownii	R			$9_{\rm W}$		19w			
*Rumex conglomeratus							50w		
*Rumex crispus	R				<u>41w</u>	<u>5</u>	1w-(shd)		
Portulacaceae									
*Portulaca oleracea						<u>1</u>	<u>5w(grn)</u>		
Primulaceae									
*Anagallis arvensis					37w		50w		
*Primula malacoides					<u>38w</u>				
Samolus repens Proteaceae	?K				<u>49w</u>	4	<u>9w(grn)</u>		
Banksia ericifolia	Κ	Κ	17w		177w		234w	c.4–5y–a few	
Banksia integrifolia		R/k						Iruit	
Banksia marginata (poss.pk.pf.flower.c.10+y)	K	K	21w		169w		218w	c.4–5y–a few fruit	
Banksia oblongifolia	R	R	17w	114w		234w			c.4–5y– a few
Banksia robur		P	3 2 w						fruit
Banksia serrata	R	ĸ	12w	108w		177w			c 3_4v_a few fruit
Banksia spinulosa	R		12.00	100w		201w			c.3-4v
Conospermum ericifolium						2010	97w-		
(prob.pk.pf.flower.c.3–5y)		К			91w		(shd)	c.2y(shd)	
subsp. angustifolium		K							
Conospermum longifolium subsp. longifolium	R	R		37w		42w			c.1–2y
<i>Grevillea buxifolia</i> (prob.pk.pf.flower.c.4–6y)	K	Κ	9w		86w		114w	c.2-3y(shd)	
<i>Grevillea linearifolia</i> (poss.pk.pf.flower.c.5–6y)	K	K	30w		87w		120w	c.2-3y(shd)	
*Grevillea robusta			28w(1)						
<i>Grevillea sericea</i> (prob.pk.pf.flower.c.4–6y)	Κ	Κ	10w		56w, 2y		114w	c.2-3y(shd)	

Family/Spacing	Fire Re	esponse	Soudlings	First flo	wering	First fr	uiting	Juvenile per	riods
(Post–fire fl, fr peaks)	LCR	NL	first obser	ved Resp	Seed	Resp	Seed	Primary	Secondary
<i>Grevillea speciosa</i> (poss.pk.pf.flower.c.5v)	K	K			136w				
Hakea dactyloides (s.str.)	K	K	32w				c.6.5y	c.6.5y–a few	
Hakea aibhosa	К	к	30w		129w		159w	$c_3 = 4y$	
Hakea laevines subsp. laevines	R	R	500	97w	12011	200w	155 1	0.5 19	c.4v
Hakea propinaua	K	K	21w	27.0	124w	20011	177w	c.3–5v–a few	fruit
Hakea salicifolia	K	K	41w		295w-bu	ds	c.6.5v	c.6.5v-a few f	ruit
Hakea sericea	K		24w		129w		163w	c.3–4y	
Hakea teretifolia	Κ	Κ	22w		153w		184w	c.3–5y	
Isopogon anemonifolius	R			90w		196w		2	c.3-4y-a few fruit
Isopogon anethifolius	R/K	R/K	124w-adv	142w	?198w		242w	c.4–5y–a few	fruit
Lambertia formosa	R			71w, 94w		195w		-	c.3–4y
Lomatia myricoides	R	R		163w		184w			c.3-4y(shd)
Lomatia silaifolia (prob.pk.pf.flower.c.1y)	R		104w(1)	49w		63w–(sho	1)		c.1-2y(shd)
Persoonia lanceolata (poss.pk.pf.fruit.c.4–6y)	K	K			108w		196w	c.3–4y	
Persoonia laurina	R			101w		131w			c.2–3y
Persoonia levis	R	R	64w(1)	50w		100w			c.2y–a few fruit
Persoonia linearis	R	R	140w-adv	108w		133w			c.2–3y
Persoonia pinifolia	Κ	Κ	124w-adv		270w		295w	c.5–6y–a few	fruit
Petrophile pulchella	Κ	Κ	24w				191w	c.3–5y–a few	fruit
Stenocarpus salignus	R	R		154w		163w			c.3–4y
Telopea speciosissima	R			c.1–2y		c.2–3y			c.2–3y–a small pop.
Xylomelum pyriforme	R	R	133w-adv	39w		133w			c.2–3y
Kanunculaceae	р			20					
Clemans aristata	K 91/			20W	41				
*Panunculus rapans	۲۲ D			30m	<u>+1W</u>	14m arm			o 1v
Rununculus repens	К			39W		44w-giii	•		C.1y
Cryptandra amara									
(prob.pk.pf.flower.c.3–5y)	рK				71w		75w		
Cryptandra ericoides		Κ			64w				
Pomaderris discolor	Κ				140w		249w		
Pomaderris elliptica		Κ			195w				
Pomaderris ferruginea (prob.pk.pf.flower.c.4–6y)	К		63w–adv		140w		149w	c.2–3y	
Pomaderris intermedia (prob.pk.pf.flower.c.4–6y)	K		50w		89w		143w		
Rosaceae									
*Potentilla indica	R					23w			
*Rubus ?discolor	R			38w		49w			c.1y
Rubiaceae									
*Galium aparine Galium binifolium	?K		36w		44w		44w	c.1y	
Morinda jasminoides (poss.pk.pf.fruit.c.5+y)	R			101w-grr	1				c.2y
Opercularia aspera	R	R	21w			23w			
Opercularia varia	pR				<u>33w</u>		<u>33w</u>		
Pomax umbellata	pК	pК	15w		38w		49w	c.1y-(shd)	
*Richardia stellaris	?R						<u>25w</u>		
Rutaceae									
Asterolasia correifolia		Κ							

Family/Species	Fire Response		First		wering	First fruiting		Juvenile per	iods
(Post–fire fl, fr peaks)	LCR	NL	first observe	d Resp	Seed	Resp	Seed	Primary	Secondary
<i>Boronia ledifolia</i> (prob.pk.pf.flower.c.4–5y)	K	K	23w		85w		97w– (shd)	c.2y	
Boronia mollis		pК	35w						
<i>Boronia pinnata</i> (poss.pk.pf.flower.c.3+y)	R	R		37w, 89w		97w-(shd)			c.2y
Boronia polygalifolia	pR								
Boronia rigens	K	рК							
Correa reflexa	nK	рK	85w		131w		89w_grn	c 2v	
(prob.pk.pf.flower.c.4–5y)	ри	pix	0.5 W		151.		07w-gili	C.2y	
Crowea saligna Eriostemon australasius		?K K/r	22w 17w						
Leionema dentatum (poss.pk.pf.flower.c.10+y)	Κ	K	30w		189w		247w	c.4–5y	
Phebalium squamulosum subsp. squamulosum		Κ							
Philotheca salsolifolia subsp. salsolifolia	рК	K			89w, 135w		141w-grr	n c.2–3y	
(prob.pk.pf.flower.c.3–6y)		917	17				07		
Zieria nilosa		<i>'</i> Γ	17W				97W		
(poss.pk.pf.fruit.c.3y)	рК		15w		63w, 85w		85w	c.2y	
(poss.pk.pf.flower.c.3–5y)	К		26w		88w		143w	c.2–3y	
Salicaceae	D								
*Populus alba *Salix ?alba	K	D							
*Salix ? alba *Salix babylonica (s. lst.)	D	К							
Santalaceae	K								
Exocarpos cupressiformis	R	R	26w	61w		19	0w		
Leptomeria acida	Κ		122w-adv		163w		190w	c.3–5y	
Sapindaceae									
*Cardiospermum grandiflorum	R		7w	9	<u>63w</u>	89	\mathbf{W}		
Dodonaea pinnata		рК	31w						
Dodonaea triquetra (prob.pk.pf.fruit.c.4–5 y)	Κ	pК	6w		63w		87w-grn	c.2–3y	
Scrophulariaceae									
*Verbascum virgatum						<u>51</u>	w		
*Veronica persica	D		10		38w		38w		
Veronica plebeia	K		19w	:	<u>39w</u>	<u>44w</u>	(<u>grn)</u>		
* Ailanthus altissima	D	D							
Solanaceae	K	K							
*Cestrum paraui	R			41w		51w			c.1v-grn
*Datura ferox						16w	(grn)) 8
*Datura stramonium			8w		<u>8w</u>	12w	(grn)		
Duboisia myoporoides		R							
*Lycopersicon esculentum			12w		15w		29w		
*Petunia ?(hybrid)					35w				
*Physalis peruviana					140w		140w		
Solanum americanum				-	<u>37w</u>	<u>37</u>	7 <u>w</u>		
Solanum aviculare	D		16w	7	<u>50w</u>	<u>94w</u>	(<u>grn)</u>		
*Solanum chenopodioides	K D	nD		/W 26w		50W			o 1v
Solanum maurittanum	ĸ	рк	13w	30W	35.00	41W	35.00		c.1y
Solanum prinopnyttum Solanum vescum			20w		38w		38w		
Secondari rescunt			2011		2011		2011		

159

Family/Sussian	Fire Re	esponse	Seedlings	First f	lowering	First fr	uiting	Juvenile pe	eriods
(Post-fire fl. fr peaks)	LCR	NL	first obser	ved Resp	Seed	Resp	Seed	Primary	Secondary
(1 000 1110 11, 11 promit)	LUK			rea Kesp	Seeu	Resp	Seeu	i i iiiai y	Secondar y
Stackhousiagaa									
Stackhousia puda		D		17w(1)					
Stackhousia nuaa	лV	ĸ	22	1/w(1)	27		40	a 1.v	
Stacknousia viminea	рк	рк	32W		57W		42W	c.1y	
Sterculiaceae				(2)					
Commersonia fraseri	K			63W					
(prob pk pf flower c 4-5v)	Κ	Κ	22w		87w		97w	c.2y(shd)	
Lasionetalum parviflorum	К				144w				
Rulingia dasynhylla	IX.				1110				
(prob.pk.pf.flower.c.3–4v)			20w		38w		92w	c.2y(shd)	
Stylidiaceae									
Stylidium graminifolium	R			30w		51w			c.1–2y
Stylidium lineare	917	V.L.	975	942	02		104	· 2-·(-11)	-
(poss.pk.pf.flower.c.3y)	/K	K/r	?15W	?42W	93W		104W	c.2y(shd)	
Stylidium productum	R	pR	26w		<u>97w</u>	<u>10</u>	<u>l w(grn)</u>		c.2–3y?
Thymelaeaceae									
Pimelea curviflora					56.00		61.00		
(poss.pk.pf.flower.c.2y)							01w		
Pimelea linifolia	К	К	2.2.w		56w		75w	c.2v(shd)	
(prob.pk.pf.flower.c.3–5y)					5011			0.2) (5110)	
Wikstroemia indica		?K							
Tremandraceae									
Tetratheca ericifolia		K							
Tetratheca glandulosa	R	R		90w					
Tetratheca thymifolia	R/?k	R	38w						
Tropaeolaceae									
*Tropaeolum majus					26w		26w		
Ulmaceae									
*Celtis australis	R								
Trema tomentosa var. viridis		?K	10w						
Urticaceae									
Urtica incisa					<u>38w</u>				
Verbenaceae									
Clerodendrum tomentosum	R	R		143w-b	ouds	4y–grn.			
*Lantana camara	R	R		16w		20w-grn			
*Verbena bonariensis (s.lat.)	R		11w		37w	0	56w		
*Verbena litoralis (s.lat.)	R			7w		10w			
*Verbena rigida					12w	23	v–(shd)		
Violaceae									
Hybanthus monopetalus	_								
(prob.pk.pf.flower.c.2–3y)	R			36w		43w– grr	l		c.1y
Viola hederacea	R		10w		10w		<u>38w</u>		
*Viola odorata	R								
Vitaceae									
Cavatia clematidea	R	R		51w		51w_orn			c 1v
Cissus hypoglauca	R	R		510		orn gin			
*Vitis sn		R							
MONOCOTVI EDONS		R							
Agavaceae	~								
*Agave americana	R			19w					
*Yucca aloifolia	R								
Alliaceae									
*Nothoscordum borbonicum	pR	pR		9w		18w			
Alstroemeriaceae									
*Alstroemeria pulchella	pR			49w		49w			
Amaryllidaceae									
*Amaryllis belladonna	pR					12w			

Family/Species	Fire Re	esponse	Seedlings	First flo	wering	First fru	uiting	Juvenile per	riods
(Post–fire fl, fr peaks)	LCR	NL	first observe	d Resp	Seed	Resp	Seed	Primarv	Secondary
_				1		1		5	5
*Clinia miniata	D								
*Clivia miniata	K D	. D		10					
*Narcissus sp.	рк	рк		18W					
Anthericaceae	D	D		27 42		10			
Caesia parviflora	R	R		37w, 42w		49w			c.ly
*Chlorophytum comosum	pR			16w					c.1y
Laxmannia gracilis (s.str.)	?K			<u>43w(</u>	(1), 46w	<u>51w</u>	<u>/–(shd)</u>		
Sowerbaea juncea		R		32w					
Thysanotus juncifolius	pR	pR		17w		<u>64</u> w	/ <u>-(shd)</u>		
Thysanotus tuberosus	R			46w					
Tricoryne simplex	R			16w		41w			c.1y
Araceae									
*Colocasia esculenta	pR	pR							
Gymnostachys anceps		R		35w		35w			
Arecaceae									
Livistona australis		R		35w					
*Phoenix ?canariensis	R								
Asnaragaceae									
*Asparagus aethiopicus	R			50w					
*Asparagus asparagoidas	D			501		16.00			o 1v
*Asparagus officinalis	nD					40w			C.1y
*Asparagus ojjicinaus	рк					16W			
*Asparagus scanaens	K								
Blandfordlaceae									
Blandfordia nobilis	R	R		46w, 49w		56w-(shd	.)		56w-(shd)
(prob.pk.pf.flower.c.2y)							·		. ,
Cannaceae									
*Canna indica	R	R		38w					
Centrolepidaceae									
Centrolepis strigosa	pК			36w		44w			44w-(shd)
Colchicaceae									
Burchardia umbellata	R	R		36w		46w			46w-(shd)
Commelinaceae									
Commelina cyanea	R	R		10w					
*Tradescantia fluminensis	R			43w					
(poss.pk.pf.flower.c.3y)	R			15 11					
Cyperaceae									
Baumea juncea	R	R		49w		51w			
Baumea rubiginosa	R	R		38w					
Carex inversa	?R			1	<u>15w</u>				
Caustis flexuosa	Κ	Κ	56w		c.2–3y				
Caustis pentandra	Κ	Κ					198w	c.4y	
Chorizandra cymbaria	R	R		31w		42w			c.1y
Chorizandra sphaerocephala		R		17w		32w			32w-(shd)
Cyathochaeta diandra	р	р		15		5(
(prob.pk.pf.flower.c.1y)	K	K		45W		20W			
*Cyperus albostriatus	pR	pR		26w					
*Cyperus brevifolius	R			10w		10w			
*Cyperus eragrostis	R			10w		10w			
Cyperus ?polystachyos	R			10w					
Fimbristylis dichotoma	pR					71w	/–(shd)		
Gahnia clarkei	R					159w			c.3v
Gahnia erythrocarpa	R	R		91w		201w			c.3–4v
Gahnia melanocarpa	R					125w			c.2-3v
Gahnia radula	R	R		90w					c. 2-3v
Gymnoschopnus sphaprocophal	15	R		2011					0.2 Jy
Isolonis ?corrug	R	IX.		101					
Isolopis inundata	К			10w	28.11				
isolepis inunaala				4	LOW				

Family/Species	Fire Ro	esponse	Seedlings	First fl	owering	First fr	uiting	Juvenile per	riods
(Post–fire fl, fr peaks)	LCR	NL	first observe	d Resp	Seed	Resp	Seed	Primary	Secondary
*Isolepis prolifera	pR						63w		
Lepidosperma filiforme	1	?K							
Lepidosperma gunnii	pR					61w			
Lepidosperma laterale	R			49w		56w			56w
Lepidosperma limicola		R		32.w					
Lepidosperma neesii	R	R		35w		63w			
Ptilothriv deusta	i c	R		5511		0511			
(prob.pk.pf.flower.c.1y)	R	R		10w		32w			c.1y-(shd)
Schoenus apogon	9 K	9K			38w				
Schoenus hrevifolius	R	.11		41w	<u></u>	63w			
Schoenus ericetorum	R			36w		0.5 W			
Schoenus imberbis	D	D		3711		76.0			
Schoenus malanostachus	R D	D		25m		70w			o 1v
Schoenus metanostucnys	К D	К D		2 2		51w			c.1y
Schoenus moorei	ĸ	K		32W		31W			c.1y
Schoenus paluaosus		ĸ		10	A 1				
Schoenus turbinatus	D			<u>10</u>	<u>4w–buas</u>				
Schoenus villosus	K			56w-bu	ds				
Tetraria capillaris	R			50w					
Tricostularia pauciflora	pR					104w			
Haemodoraceae	-								
Haemodorum corymbosum	R	R		42w		64w			
Haemodorum planifolium	R	R		42w		56w			56w-(shd)
(prob.pk.pf.flower.c.1y)									
Hypoxidaceae	D			16					
Iridaceae	рк			10W					
*Anomatheca laxa	pR			40w					
*Aristea ecklonii	pR	R		41w		44w			
*Crocosmia X crocosmiiflora	pR	рR		18w		38w-grn			
* <i>Freesia</i> hybrid	pR	r		33w		38w			
*Gladiolus angustus	pR	pR		40w					
Patersonia glabrata	R	R		38w		49w			c.1v-(shd)
Patersonia sericea	R	R		31w		44w			$c_1 v_{-}(shd)$
*Romulea rosea	pR			33w					erry (site)
*Sisvrinchium iridifolium	1	?K			42w		42w		
*Sisvrinchium species A	?K	?K			42w		44w		
*Watsonia meriana				20					7 0 0.0
cv. Bulbillifera	pR	pR		38W		Note: Bu	lbils began t	to be shed within	n 50w of fire.
Juncaceae									
*Juncus articulatus	R			10w					
*Juncus bufonius		р		42 h		<u>38</u>	<u>w(grn)</u>		
Juncus continuus Juncus planifolius		К		42w-0u0	us		40w		
Juncaginaceae							<u>+0 w</u>		
Triglochin procerum (s.str.)		рR		20w		20w			20w
Liliaceae		P		20.0		2011			2011
*Lilium formosanum	R	R		26w		29w–grn			
Lomandraceae						0			
Lomandra cylindrica	R			40w		56w			56w-(shd)
Lomandra filiformis	R	R		35w		51w			c.1v
subsp. <i>filiformis</i>	D			5511		2117			2.13
Lomanara fluviatilis	К	р		26		40			a 1.:
Lomanara glauca	К	ĸ		36W		49W			c.1y
Lomandra gracilis	ĸ	ĸ	101	38W		51w			c.1y–(shd)
Lomandra longifolia	R	ĸ	131w	34w		50w			c.1y–(shd)
Lomandra micrantha	R	D		64w		51			1
Lomandra multiflora	K	K		41w		51w			c.ly

Family/Species	Fire Re	esponse	First f	flowering	First fr	uiting	Juvenile pe	eriods
(Post–fire fl, fr peaks)	LCR	NL	first observed Resp	Seed	Resp	Seed	Primarv	Secondary
· · · ·			F	~	F		5	~J
T	D	D	41		40			. 1
Lomanara obliqua	K	K	41W		49W			c.1y
	р	D	15		25			25
Eustrephus tattjottus	ĸ	рк	15W 25 hv	, da	33W			55W-FI
Gettonoplesium cymosum		K	33W-DI	las				
Orchidaceae	D		20		20			
Acianthus caudatus	рК		28w		38W			
Acianthus fornicatus	рК		23w		33W			
Acianthus pusillus	pR		16w		26w			
Caladenia carnea	pR		36w		20			
Caladenia catenata	pR		34w	0.6 (1)	39w			
Caladenia testacea	D	D	27	<u>86w (1)</u>	40			
Caleana major Calechilus campastris	pK pP	pK pP	37W 37w		49W 42m			
Calochilus paludosus	pR pP	pR pP	37w 37w		42w			
Calochilus robertsonii	pR pP	рк	37w 30w		41 W			
Catiohia roflara	рк	V	J9W	provid from	ncoudobulb	- NI		
Cesticnis reflexa		л "D	Lightly burnt plants les	prouted from	pseudobuib	s-INL.		
Chilogiotits sp.		рк	IUW	1	. 25 66			
Corybas pruinosus	D	рК	Leaves	emerged with	100 nin 35w of fi	re.		
Cryptostylis erecta	pR		46w	101	108w			
Cryptostylis subulata	pR	**		<u>101w</u>	. ~ <u>101</u>	<u>w–grn</u>	6	
Cymbidium suave	pK	pК	Respro	uted, low inte	ensity-flowe	red 92w aft	ter fire.	
Dipodium roseum	pR			<u>101w</u>				
Dipodium variegatum	pR	D	49w		42			
Diuris aurea Diuris maculata		рк	37W		42W			
(prob.pk.pf.flower.c.1v)	pR		30w		36w			
Dockrillia linguiformis	Κ	К	14	43w-buds				
Eriochilus petricola	pR		64w					
Genoplesium fimbriatum	r	pR	10w		21w			
Genoplesium pumilum		pR			17w			
Genoplesium rufum	pR	pR	16w		24w			
Glossodia major	r	pR	31w					
Glossodia minor	pR	pR	31w		36w			
Lyperanthus suaveolens	pR	Pre	36w		500			
Microtis unifolia (s lat)	pR pR	nR	36w		43w			
Orthoceras strictum	Pre	Pre	5011		15	04w		
Prasonhyllum elatum	nR	nR	36w		43w	011		
Prasonhyllum striatum	pix	pR pR	50W		-1.5 W			
Pterostylis acuminata	nD	pr	18		2.2.W			
Pterostylis acuminaia	pR pR		20w		30.57			
I terostylis concinna Dianostylis dainthoana	рк	ъD	29w		21m			
Pterostylis longifolia	ъD	рк	22w		JIW			
Pterostylis congijolia	pr.	-D	24w 20m		26			
Pierosiyiis nuians	рк	рк	30W		30W			
Rimacola elliptica	рк	рк	38W		42 (.1.3	D.		
Thelymitra ixioides	рк	рк	31W		43W–(sno	1)		
Thelymitra pauciflora	pR	pR	3/w		42w			
Philydraceae		D			20			
Philyarum lanuginosum		рк			20W			
Dianella caerulea	R	R	41w		49_{W}			c 1v
Dianella prunina	R	R	Δ3w		51w			c.1y
Dianella revoluta	R	IX.	ч.5 w QД w		J 1 W			0.1 y
Thelionema caespitosum	R		94w Q1w		100w			
Poaceae	11		7 I W		100 10			
*Agrostis capillaris				<u>43w</u>				
*Agrostis stolonifera				<u>43w</u>				
*Andropogon virginicus	R	R	15w		20w			20w

Family/Species	Fire Response		First flowering Seedlings		owering	First fruiting		Juvenile periods	
(Post–fire fl, fr peaks)	LCR	NL	first observed]	Resp	Seed	Res	o Seed	Primary	Secondary
				1				5	J
Anisopogon avenaceus									
(poss.pk.pf.flower.c.1–2v)	R	R	4	1w		49w			c.1y–(shd)
Aristida benthamii		R	1	7w		32w			32w-(shd)
Aristida calycina var. calycina	R					26w			26w-(shd)
Aristida ramosa	R	R	8	W		17w			17w
Aristida vagans	R		6	W		15w			15w-(shd)
Aristida warburgii	R		1	1w		16w			16w
*Arundo donax	R								
Austrodathonia ?linkii							<u>30w-(shd)</u>		
Austrodanthonia tenuior	R		1	1w		18w			18w
Austrostipa pubescens	R					49w			c.1y-(shd)
*Avena sativa					<u>23w</u>		<u>43w-(shd)</u>		
*Briza maxima	?K				43w		50w	1y-(shd)	
*Briza minor	?K	?K			28w		43w	43w	
*Briza subaristata							<u>51w</u>		
*Bromus catharticus					<u>39w</u>				
*Bromus diandrus					<u>41w</u>				
*Chloris gayana		R	1	3w		35w			
*Cortaderia selloana	R	R	1	8w		20w			
Cymbopogon refractus	R		9	W		19w			19w
Deyeuxia quadriseta					<u>39w</u>		<u>44w</u>		
Dichelachne crinita	R	pR	3	7w		49w			c.1y-(shd)
Dichelachne micrantha	R		1	6w					
Dichelachne parva					<u>39w</u>				
Dichelachne rara				-	<u>41w</u>	20			20 (11)
Digitaria parviflora	R	R	1	3w		30w			30w–(shd)
Echinopogon caespitosus	K D		8	W 2		15W	29		15W
*Enrnaria erecia *El main e in die e	К		1	ZW	15		<u>38W</u>		
*Eleusine inalca	р		0		<u>13W</u>	20			29 (ah d)
Entolasia marginala	K D	D	9	w		28W			28w-(snd)
Entotasta sincia Fragrostis ² brounii	D	ĸ	8	w		ZZW			ZZW
Eragrostis Intostachya	D		0	w					
Homarthria uncinata	D	D	9	w 1					
*Hordeum distichon	K	K	1	1 W	12w		40.00		
Imperate cylindrice yer major	P		6	X 1/	<u>12w</u>	11.52	<u>40w</u>		11.52
Lachnaarostis filiformis	K		0	vv	30,11/	11 W	44.00		11 w
*I olium multiflorum					<u>38w</u>		<u></u>		
*I olium perenne					<u>44</u> w				
*Melinis renens	R		1	9w	<u></u>	26w			
Microlaena stipoides	R		8	w		15w			15w
Onlismenus aemulus	2K		0		19w	15.0			15.0
Panicum simile	R		1	5w	1211	16w			
*Paspalum dilatatum	R		1	0w		15w			15w
*Paspalum auadrifarium	R	R	1	1w		28w			28w-(shd)
*Paspalum urvillei	R		9	w		9w			2011 (0110)
*Pennisetum clandestinum	R	pR	,						
*Pennisetum macrourum	R	1	5	0w					
Phragmites australis	R		5			71w			c. 1–2v
*Phyllostachys aurea	R								-5
*Poa annua					30w				
Poa labillardieri	R		9	w					
*Setaria gracilis	R		9	w		10w			
*Setaria palmifolia	R	R	1	6w		30w			
*Setaria sphacelata		R	3	8w		38w			

Family/Species	Response	Seedlings	First flowering		First fruiting		Juvenile periods	
(Post-fire fl, fr peaks) LCR	NL	first observe	d Resp	Seed	Resp	Seed	Primary	Secondary
*Sorghum bicolor				23w		23w		
*Sporobolus africanus				<u>19w</u>				
Sporobolus creber pR			15w					
Themda australis R	R		13w		49w			c.1y
*Vulpia bromoides				<u>43w</u>				
Restionaceae								
Baloskion tetraphyllum subsp. meiostachyum	R							
Chordifex dimorphus	K/ r	One plant respr	outed. O	thers appare	ntly killed.			
Chordifex fastigiatus	Κ	One plant respr	outed, bi	ut it was not	100% scorel	hed.		
Empodisma minus R		1 1						
Eurychorda complanata	pK	Unable to find to observed 38w a	this speci after the f	ies in one loo fire).	cation where	it previous	ly occurred bef	ore the fire (as
Leptocarpus tenax	R			<u>32w</u>				
Lepyrodia scariosa R	R		56w					
Smilacaceae								
Smilax australis R	R		35w-(1	.)				
Smilax glyciphylla R			46w		50w			c.1y
Typhaceae								
<i>Typha ?orientalis</i> pR					85w			
Uvulariaceae								
Schelhammera undulata R	R		13w		44w			44w-grn.
Xanthorrhoeaceae								
Xanthorrhoea arborea (prob.pk.pf.flower.c.1y) R	R		35w,51v	N	100w			c.2y-(shd)
Xanthorrhoea media (prob.pk.pf.flower.c.1y) R	R		17w,39v	N	56w			56-63w(shd)
Xanthorrhoea ?minor			38w					
Xanthorrhoea resinifera R	R		43w					
Xyridaceae								
Xyris gracilis R			51w					
Xyris juncea	R		17w		32w			
Xyris operculata	R		32w					
Zingiberaceae								
*Hedychium gardnerianum R					88w			